Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene EPA 600/R-07/091 | August 2007 | www.epa.gov/ada Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene Office of Research and Development National Risk Management Research Laboratory, Ada, Oklahoma 74820 Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene Jed Costanza, James Mulholland, and Kurt Pennell Georgia Tech University Eva Davis Project Officer, Robert S. Kerr Environmental Research Center Office of Research and Development National Risk Management Research Laboratory, Ada, Oklahoma 74820 Notice The U.S. Environmental Protection Agency through its Office of Research and Development managed the research described here under EPA Coopera- tive agreement Contract No. R-82947401 to Georgia Institue of Technology, Atlanta, Georgia, through funds provided by the U.S. Environmental Protection Agency’s Office of Research and Development, National Risk Management Research Laboratory, Ada, Oklahoma. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. All research projects making conclusions or recommendations based on environmental data and funded by the U.S. Environmental Protection Agency are required to participate in the Agency Quality Assurance Program. This project was conducted under an approved Quality Assurance Plan. Information on the plan and documentation of the quality assurance activities and results are available from the lead author. ii Foreword The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory is the Agency’s center for investigation of technological and management approaches for preventing and reducing risks from pollution that threatens human health and the environment. The focus of the Laboratory’s research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL’s research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels. This report describes laboratory experiments conducted to determine the reactivity of trichloroethylene (TCE), a commonly-used industrial solvent and a groundwater contaminant at many Superfund sites, under the conditions used for in situ thermal remediation. It was found that at temperatures below 420°C, TCE is essentially unreactive without the presence of some type of catalyst, such as a base or mineral. Thus, during in situ thermal remediation at these temperatures, TCE is recovered by volatilization and vapor extraction. At higher temperatures, significant reaction of TCE may occur; however, the products of these reactions may include larger molecular weight chlorinated compounds as well as carbon dioxide and hydrochloric acid, which would be the expected products when TCE is completely mineralized. Stephen G. Schmelling, Director Ground Water and Ecosystems Restoration Division National Risk Management Research Laboratory iii Acknowledgment EPA would like to thank the peer reviewers, Dr. Bill Mabey, Dr. Gorm Heron, and Dr. Rick Wilken, for their insightful and useful comments. iv Contents Project Summary . 1 1.1 Introduction .......................................................................... 1 1.2 Research Objectives . 1 1.3 Experimental Systems .................................................................. 2 1.4 Conclusions and Recommendations . 2 1.4.1 Quartz Tube Reactor Experiments .................................................... 2 1.4.2 Sealed Ampule Experiments . 3 1.4.3 Implications to Field Applications .................................................... 3 1.5 Report Organization . 6 Background Information . 7 2.1 Trichloroethylene Properties ............................................................. 7 2.2 TCE-Water Phase Behavior.............................................................. 8 2.3 Selected Experiments on the Stability of TCE . 8 2.3.1 TCE-NAPL Degradation by Oxygen .................................................. 8 2.3.2 Hydrolysis of TCE-NAPL Degradation Products . 10 2.3.3 Degradation of TCE Dissolved in Water at Elevated Temperatures . 11 2.3.4 Thermal Degradation of TCE in a Water-Filled Reactor . 12 2.3.5 Degradation of Gas-Phase TCE within Heated Quartz Tubes ............................... 15 2.3.6 TCE Degradation Products as a Function of the Cl:H Ratio . 19 2.4 Operational Conditions of In Situ Thermal Treatment Technologies . 21 2.4.1 Steam Flushing................................................................... 21 2.4.2 Thermal Conductive Heating ........................................................ 22 2.4.3 Electrical Resistive Heating ......................................................... 23 2.4.4 Hybrid Thermal Technologies . 24 TCE Degradation in Flow-Through Quartz Tube Reactors............................................. 25 3.1 Introduction .......................................................................... 25 3.2 Experimental Materials and Methods . 26 3.2.1 Materials........................................................................ 26 3.2.2 Quartz Tube Apparatus............................................................. 26 3.2.3 Experimental Procedures . 27 3.2.3.1 Experimental Series 1........................................................ 27 3.2.3.2 Experimental Series 2........................................................ 27 3.2.3.3 Experimental Series 3........................................................ 27 3.2.3.4 Experimental Series 4........................................................ 28 3.2.3.5 Experimental Series 5........................................................ 28 3.2.4 Analytical Methods . 29 3.3 Experimental Results................................................................... 29 3.3.1 Results of Experimental Series 1-4 . 29 3.3.2 Results of Experimental Series 5 . 31 3.3.2.1 TCE Recovery . 32 3.3.2.2 Compounds in the DCM Trap . 33 3.3.2.3 Compounds Detected in Tedlar® Bags . 35 3.3.2.4 Compounds Detected in the Water Rinse......................................... 36 3.3.2.5 Compounds Detected in the Iso-Octane Rinse..................................... 37 3.3.2.6 Mass Balance . 39 3.4 Discussion . 40 3.4.1 Nitrogen as the Carrier Gas at 420°C.................................................. 40 3.4.2 Air as the Carrier Gas at 420°C ...................................................... 42 3.4.3 Experiments Conducted at 120 and 240°C . 43 3.5 Summary . 45 v 3.6 Quality Assurance Summary for the Flow-Through Experiments . 45 TCE Degradation in Heated Ampules . 47 4.1 Introduction .......................................................................... 47 4.2 Experimental Materials and Methods . 47 4.2.1 Preparation of Solids . 47 4.2.2 Preparation of Aqueous Solutions . 48 4.2.3 Preparation of Ampules . 48 4.2.4 Description of Ampule Experiments . 49 4.2.4.1 Ampule Experiment 1 . 49 4.2.4.2 Ampule Experiment 2 . 49 4.2.4.3 Ampule Experiment 3 . 50 4.2.3.4 Ampule Experiment 4 . 50 4.2.4 Ampule Sampling Methods . 54 4.2.5 Analytical Methods . 55 4.3 Experimental Results................................................................... 56 4.3.1 Results of Ampule Experiment 1 . 56 4.3.2 Results of Ampule Experiment 2 . 56 4.3.3 Results of Ampule Experiment 3 . 58 4.3.2 Results of Ampule Experiment 4 . 61 4.3.2.1 Change in TCE Content ...................................................... 61 4.3.2.2 Change in pH . 64 4.3.2.3 CO and CO2 in the Gas Phase . 67 4.3.2.4 Other Gas Phase Compounds.................................................. 69 4.3.2.5 Aqueous Phase Compounds................................................... 69 4.3.2.6 Mass Balance . 74 4.4 Discussion . 76 4.4.1 Oxygen Initiated TCE Degradation . 76 4.4.2 Hydrogen Elimination Initiated TCE Degradation . 77 4.4.3 Oven Explosion . 78 4.4.4 Comparison to Knauss et al. (1999) Results . 78 4.5 Summary . 79 4.6 Quality Assurance Summary for the Ampule Experiments...................................... 80 References . 81 APPENDIX A . 87 Detailed Experimental Methods for Flow-Through Quartz Tube Reactors................................. 87 A.1 Quartz
Recommended publications
  • Problem Formulation of the Risk Evaluation for Perchloroethylene (Ethene, 1,1,2,2-Tetrachloro)
    EPA Document# EPA-740-R1-7017 May 2018 DRAFTUnited States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Problem Formulation of the Risk Evaluation for Perchloroethylene (Ethene, 1,1,2,2-Tetrachloro) CASRN: 127-18-4 May 2018 TABLE OF CONTENTS ABBREVIATIONS ............................................................................................................................ 8 EXECUTIVE SUMMARY .............................................................................................................. 11 1 INTRODUCTION .................................................................................................................... 14 1.1 Regulatory History ..................................................................................................................... 16 1.2 Assessment History .................................................................................................................... 16 1.3 Data and Information Collection ................................................................................................ 18 1.4 Data Screening During Problem Formulation ............................................................................ 19 2 PROBLEM FORMULATION ................................................................................................. 20 2.1 Physical and Chemical Properties .............................................................................................. 20 2.2 Conditions of Use ......................................................................................................................
    [Show full text]
  • Toxicological Profile for Tetrachloroethylene
    TETRACHLOROETHYLENE 263 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Tetrachloroethylene has been identified in at least 949 of the 1,854 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2017a). However, the number of sites evaluated for tetrachloroethylene is not known. The frequency of these sites can be seen in Figure 6-1. Of these sites, 943 are located within the United States, 3 are located in the Commonwealth of Puerto Rico (not shown), 1 is located in Guam (not shown), and 1 is located in the Virgin Islands (not shown). Tetrachloroethylene is a VOC that is widely distributed in the environment. It is released to the environment via industrial emissions and from building and consumer products. Releases are primarily to the atmosphere. However, the compound is also released to surface water and land in sewage sludges and in other liquid and solid waste, where its high vapor pressure and Henry's law constant usually result in its rapid volatilization to the atmosphere. Tetrachloroethylene has relatively low solubility in water and has medium-to-high mobility in soil; thus, its residence time in surface environments is not expected to be more than a few days. However, it persists in the atmosphere for several months and can last for decades in the groundwater. Background tetrachloroethylene levels in outdoor air are typically <1 μg/m3 (0.15 ppb) for most locations (EPA 2013h, 2018); however, indoor air at source dominant facilities (e.g., dry cleaners) has been shown to have levels >1 mg/m3 (Chiappini et al.
    [Show full text]
  • Dichloroethylene
    Development Support Document Final, October 15, 2007 Accessible 2013 1,1-Dichloroethylene CAS Registry Number: 75-35-4 Prepared by Shannon Ethridge, M.S. Toxicology Section Chief Engineer’s Office ___________________________________________________________ TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 1,1 Dichloroethylene Page 2 TABLE OF CONTENTS CHAPTER 1 SUMMARY TABLES ........................................................................................... 4 CHAPTER 2 MAJOR USES OR SOURCES ............................................................................ 6 CHAPTER 3 ACUTE EVALUATION ....................................................................................... 6 3.1 HEALTH-BASED ACUTE REV AND ESL ................................................................................. 6 3.1.1 Physical/Chemical Properties and Key Studies ............................................................. 6 3.1.2 Mode-of-Action (MOA) Analysis ................................................................................. 10 3.1.3 Dose Metric .................................................................................................................. 10 3.1.4 Point of Departure (POD) for the Key Study............................................................... 10 3.1.5 Dosimetric Adjustments ............................................................................................... 11 3.1.6 Critical Effect and Adjustment of PODHEC .................................................................. 11 3.1.7 Health-Based
    [Show full text]
  • Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document for Hexachlorobutadiene
    Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document for Hexachlorobutadiene U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 www.epa.gov/safewater/ EPA 822-R-03-002 February 2003 Printed on Recycled Paper FOREWORD The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the Environmental Protection Agency (EPA) to establish a list of contaminants to aid the agency in regulatory priority setting for the drinking water program. In addition, SDWA requires EPA to make regulatory determinations for no fewer than five contaminants by August 2001. The criteria used to determine whether or not to regulate a chemical on the CCL are the following: The contaminant may have an adverse effect on the health of persons. The contaminant is known to occur or there is a substantial likelihood that the contaminant will occur in public water systems with a frequency and at levels of public health concern. In the sole judgment of the administrator, regulation of such contaminant presents a meaningful opportunity for health risk reduction for persons served by public water systems. The Agency’s findings for the three criteria are used in making a determination to regulate a contaminant. The Agency may determine that there is no need for regulation when a contaminant fails to meet one of the criteria. This document provides the health effects basis for the regulatory determination for hexachlorobutadiene. In arriving at the regulatory determination, data on toxicokinetics, human exposure, acute and chronic toxicity to animals and humans, epidemiology, and mechanisms of toxicity were evaluated.
    [Show full text]
  • 1,2-DICHLOROETHANE 1. Exposure Data
    1,2-DICHLOROETHANE Data were last reviewed in IARC (1979) and the compound was classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-06-2 Chem. Abstr. Name: 1,2-Dichloroethane IUPAC Systematic Name: 1,2-Dichloroethane Synonym: Ethylene dichloride 1.1.2 Structural and molecular formulae and relative molecular mass Cl CH2 CH2 Cl C2H4Cl2 Relative molecular mass: 98.96 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid with a pleasant odour (Budavari, 1996) (b) Boiling-point: 83.5°C (Lide, 1995) (c) Melting-point: –35.5°C (Lide, 1995) (d) Solubility: Slightly soluble in water; miscible with ethanol, chloroform and diethyl ether (Lide, 1995; Budavari, 1996) (e) Vapour pressure: 8 kPa at 20°C (Verschueren, 1996) (f) Flash-point: 18°C, open cup (Budavari, 1996) (g) Conversion factor: mg/m3 = 4.0 × ppm 1.2 Production and use World production capacities in 1988 for 1,2-dichloroethane have been reported as follows (thousand tonnes): North America, 9445; western Europe, 9830; Japan, 3068; and other, 8351 (Snedecor, 1993). Production in the United States has been reported as follows (thousand tonnes): 1983, 5200; 1990, 6300; 1991, 6200; 1992, 6900; 1993, 8100 (United States National Library of Medicine, 1997). The total annual production in Canada in 1990 was estimated to be 922 thousand tonnes; more than 1000 thousand tonnes were produced in the United Kingdom in 1991 (WHO, 1995). –501– 502 IARC MONOGRAPHS VOLUME 71 1,2-Dichloroethane is used primarily in the production of vinyl chloride; 99% of total demand in Canada, 90% in Japan and 88% of total production in the United States are used for this purpose.
    [Show full text]
  • Toxicological Profile for 1,1-Dichloroethene Draft for Public Comment December 2019 1,1-DICHLOROETHENE Ii
    F Toxicological Profile for 1,1-Dichloroethene Draft for Public Comment December 2019 1,1-DICHLOROETHENE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. This information is distributed solely for the purpose of pre dissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy. ***DRAFT FOR PUBLIC COMMENT*** 1,1-DICHLOROETHENE iii FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health.
    [Show full text]
  • 1,1-Dichloroethene (Vinylidene Chloride)
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 51 1,1-DICHLOROETHENE (VINYLIDENE CHLORIDE) Please note that the pagination and layout of this web version are not identical to the printed CICAD First draft prepared by Dr Bob Benson, US Environmental Protection Agency, Denver, Colorado, USA Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2003 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • High Hazard Chemical Policy
    Environmental Health & Safety Policy Manual Issue Date: 2/23/2011 Policy # EHS-200.09 High Hazard Chemical Policy 1.0 PURPOSE: To minimize hazardous exposures to high hazard chemicals which include select carcinogens, reproductive/developmental toxins, chemicals that have a high degree of toxicity. 2.0 SCOPE: The procedures provide guidance to all LSUHSC personnel who work with high hazard chemicals. 3.0 REPONSIBILITIES: 3.1 Environmental Health and Safety (EH&S) shall: • Provide technical assistance with the proper handling and safe disposal of high hazard chemicals. • Maintain a list of high hazard chemicals used at LSUHSC, see Appendix A. • Conduct exposure assessments and evaluate exposure control measures as necessary. Maintain employee exposure records. • Provide emergency response for chemical spills. 3.2 Principle Investigator (PI) /Supervisor shall: • Develop and implement a laboratory specific standard operation plan for high hazard chemical use per OSHA 29CFR 1910.1450 (e)(3)(i); Occupational Exposure to Hazardous Chemicals in Laboratories. • Notify EH&S of the addition of a high hazard chemical not previously used in the laboratory. • Ensure personnel are trained on specific chemical hazards present in the lab. • Maintain Material Safety Data Sheets (MSDS) for all chemicals, either on the computer hard drive or in hard copy. • Coordinate the provision of medical examinations, exposure monitoring and recordkeeping as required. 3.3 Employees: • Complete all necessary training before performing any work. • Observe all safety
    [Show full text]
  • Tetrachloroethylene Facts
    TETRACHLOROETHYLENE CAS # 127-18-4 Agency for Toxic Substances and Disease Registry ToxFAQs September 1997 This fact sheet answers the most frequently asked health questions (FAQs) about tetrachloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Tetrachloroethylene is a manufactured chemical used for dry cleaning and metal degreasing. Exposure to very high concentrations of tetrachloroethylene can cause dizziness, headaches, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death. Tetrachloroethylene has been found in at least 771 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA). What is tetrachloroethylene? How might I be exposed to tetrachloroethylene? (Pronounced tµt”r…-klôr“ ½-µth“…-l¶n”) q When you bring clothes from the dry cleaners, they will release small amounts of tetrachloroethylene into the air. Tetrachloroethylene is a manufactured chemical that is q widely used for dry cleaning of fabrics and for metal-degreas- When you drink water containing tetrachloroethylene, you are exposed to it. ing. It is also used to make other chemicals and is used in some consumer products. Other names for tetrachloroethylene include perchloroet- How can tetrachloroethylene affect my health? hylene, PCE, and tetrachloroethene. It is a nonflammable High concentrations of tetrachloroethylene (particularly liquid at room temperature.
    [Show full text]
  • Toxicological Profile for Trichloroethylene
    TRICHLOROETHYLENE 23 3. HEALTH EFFECTS 3.1 INTRODUCTION The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of trichloroethylene. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE To help public health professionals and others address the needs of persons living or working near hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, oral, and dermal) and then by health effect (e.g., death, systemic, immunological, neurological, reproductive, developmental, and carcinogenic effects). These data are discussed in terms of three exposure periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). Levels of significant exposure for each route and duration are presented in tables and illustrated in figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest- observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death, or those whose significance to the organism is not entirely clear.
    [Show full text]
  • Potassium Hydroxide Pellets
    SAFETY DATA SHEET Preparation Date: 3/13/2015 Revision Date: 3/13/2015 Revision Number: G1 Product identifier Product code: P1315 Product Name: POTASSIUM HYDROXIDE, PELLETS, REAGENT, ACS Other means of identification Synonyms: Caustic Potash CAS #: 1310-58-3 RTECS # TT2100000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Electroplating; photoengraving & lithography; printing inks; in analytical chemistry & in organic synthesis; manfufacturing of liquid soap; pharmaceutical aid (as alkalizing agent); mordant for woods; absorbing carbon dioxide; mercerizing cotton; paint & varnish removers. Principle uses of KOH include chemicals, particularly the production of potassium carbonate and potassium permaganate; pesticides, fertilizers, and other agricultural products; soaps and detergents; scrubbing and cleaning operations, e.g., industrial gases; dyes and colorants; and rubber chemicals. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 3 Skin corrosion/irritation Category 1 Serious eye damage/eye irritation Category 1 Corrosive
    [Show full text]
  • Chemicals Used in Drycleaning Operations
    Chemicals Used In Drycleaning Operations January, 2002 Revised July 2009 Chemicals Search Menu The following resource was developed for the State Coalition for Remediation of Drycleaners (SCRD) using material safety data sheets (MSDS) and other sources. The report was prepared by Bill Linn, Florida Department of Environmental Protection (FDEP). Scott Stupak, North Carolina Superfund Section, provided technical support for database development. INTRODUCTION A wide variety of chemicals has been used and is currently utilized in drycleaning operations. Using material safety data sheets (MSDS) and other sources; a drycleaning chemical data base was developed that includes many of the chemicals that have been used in drycleaning operations. These data and the accompanying text are intended to aid those engaged in the assessment and remediation of contaminated drycleaning sites and to assist regulators conducting compliance inspections at drycleaning facilities. Some of the chemicals/products listed on the spreadsheet are no longer manufactured, marketed or used in drycleaning operations. Drycleaning Chemical Data Spread Sheet The spread sheet is divided into the following categories: • Chemical product or trade name (as listed on the MSDS) • Chemical manufacturer or distributor • Use or function of the product • Additional information • Chemical constituent(s) as listed on the MSDS • Chemical Abstract Numbers (CAS #s) for listed constituents • Relative concentration of the constituent in the product All product ingredients or constituents that appear on the MSDS were listed on the spread sheet – both hazardous and non-hazardous. The manner in which product constituents are reported on MSDS varies widely. Many manufacturers/vendors simply list all ingredients as being proprietary (trade secrets).
    [Show full text]