Original Article Preoperative Intravenous Administration Of

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Preoperative Intravenous Administration Of Int J Clin Exp Med 2016;9(9):18451-18457 www.ijcem.com /ISSN:1940-5901/IJCEM0016462 Original Article Preoperative intravenous administration of dezocine for cesarean section under epidural anesthesia: effects on maternal well-being and neonatal outcome Keqiang He, Jianhui Pan, Liguo Hu, Ruiting Wang, Ling Hu Department of Anesthesia, Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, China Received September 19, 2015; Accepted January 21, 2016; Epub September 15, 2016; Published September 30, 2016 Abstract: We evaluated the efficacy and safety of preoperative intravenous administration of dezocine for comfort- able birth by cesarean section under epidural anesthesia. Sixty primigravida women with full-term singletons un- derwent elective cesarean section, and were randomly divided into three groups. Patients in groups A and B were intravenously injected with 5 and 10 mg of dezocine, 10 min before skin incision, whereas patients in group C were intravenously injected with saline. We recorded data on visceral traction responses and intraoperative adverse reactions, such as nausea and vomiting. While the neonate was being delivered, the umbilical arterial and venous blood gas values were determined. The Apgar scores at 1, 5, and 10 min after delivery, as well as the Neurologic Adaptive and Capacity Score (NACS) at 15 min, 2 h, and 24 h, were recorded. The “fineness rate” required to relieve the traction reaction in group B was higher than that in group C (P < 0.05). The intraoperative Modified Observer’s Assessment of Alertness/Sedation (MOAA/S) scores of groups A and B were lower than that of group C, and the time period that the intraoperative MOAA/S score was ≤ 4 points was longer in group B (P < 0.05). The umbilical blood gas values, as well as the NACS and Apgar scores, were not statistically significantly different among the groups at any time points. The preoperative administration of 10 mg of dezocine further improved the comfort level of women during cesarean section under epidural anesthesia. Adverse maternal and neonatal effects, such as respiratory depression, were not observed. Keywords: Dezocine, cesarean section, anesthesia, epidural, Apgar score Introduction agonist/antagonist developed in the 1970s by the American Home Products Corporation [8]. Traumatic birthing experiences have significant Dezocine was approved by the Food and Drug effects on the physical and emotional well- Administration for perioperative care manage- being of women, their offspring, and their fami- ment, but was discontinued with the closure of lies [1, 2]. During a cesarean section under epi- its parent company. PubMed lists 74 articles dural anesthesia, the traction on the abdomi- related to dezocine, the first of which was pub- nal peritoneum and the delivery of the fetus are lished in Anesthesia & Analgesia in 1978, dem- accompanied by pain and discomfort, and no onstrating its use for postoperative pain man- effective intervention exists. The administra- agement [8]. Although no longer clinically used tion of opioids is avoided during cesarean sec- in Western countries, dezocine has gained pop- tion to reduce the risk of neonatal respiratory ularity in China as an alternative medicine for depression after delivery. The search for com- perioperative pain management [9, 10]. fortable medical treatments, including labor Dezocine exhibits less respiratory depression analgesia, has gained considerable attention. than pure μ-receptor agonists because the for- New μ-receptor agonists, such as remifentanil mer mainly excites the κ receptor, which results and sufentanil, have been safely applied for in spinal analgesia and sedation effects [11]; labor analgesia and anesthesia [3-7]. thus, the safety range of dezocine is wide. Dezocine is an opioid that is structurally similar Analgesia during pregnancy and childbirth is to pentazocine, a mixed opioid receptor partial mediated through the spinal endogenous opi- The efficacy and safety of dezocine oid peptides, especially in the activation of the patients in groups A and B were intravenously analgesic systems of spinal κ and δ receptors administered 5 or 10 mg of dezocine (diluted to [12-14]. We intravenously administered dezo- 5 mL with saline, batch number: 13080221, cine 10 min prior to cesarean section to ana- Yangtze River Pharmaceutical Group Co., Ltd., lyze its safety, anesthetic efficacy, and neona- China), respectively. The patients in group C tal outcome. were intravenously administered 5 mL of saline. The surgeon performed a longitudinal skin inci- Materials and methods sion along the midline 10 min later. General information Observation indexes We enrolled 60 primigravida women with full- The women’s visceral traction reactions were term singletons who underwent elective cesar- scored during the cesarean section. Grade 0 ean section (American Society of Anesthetists implies that the patient was quiet and did not [ASA] Physical Status grade I or II; age, 21-37 experience pain or discomfort; grade 1 depicts years; weight, 59-88 kg). The patients were mild discomfort without traction pain; grade 2 randomly divided into three groups, with 20 indicates mild traction pain; grade 3 implies cases per group. The participants did not exhib- significant traction pain accompanied with nau- it fetal distress, heart and lung diseases, diabe- sea, vomiting, or flatulence. Grades 0 and 1 tes, hypertension, or a history of opioid allergy. were classified as “fine”. Grades 2 and 3 were The preoperative laboratory tests showed no classified as “moderate” and “poor”, respec- abnormalities, and the acupuncture method tively. The “fineness rate” is defined as the per- revealed that the epidural block height was centage of women classified as “fine” divided over T6. Women who had epidural block heights by the total number in each group. The degrees of less than T8 or felt significant pain during the of intraoperative sedation were scored with the surgical incision were excluded. This study was Modified Observer’s Assessment of Alertness/ conducted in accordance with the declaration Sedation (MOAA/S) scale every 5 min. A of Helsinki. This study was conducted with MOAA/S score of 0 indicates the complete approval from the Ethics Committee of Affiliated absence of a response to painful stimuli; a Provincial Hospital of Anhui Medical University. score of 1 signifies the absence of a response Written informed consent was obtained from all to mild prodding or shaking but a response to participants. painful stimuli; a 2 is a response to mild prod- Anesthesia ding or shaking; 3 indicates response only after the patient’s name was called loudly and/or After the women arrived in the operating room, repeatedly; a 4 implies lethargic response to blood pressure (BP), heart rate (HR), heart the name spoken in a normal tone; and a 5 indi- rhythm (by electrocardiogram [ECG]) and arte- cates a prompt response to the name spoken. The time that the intraoperative MOAA/S score rial oxygen saturation (SpO2) were monitored. A peripheral vein was accessed to infuse 6% was ≤ 4 points was recorded. Episodes of SpO2 hydroxyethyl starch 130/0.4. Oxygen was sup- < 95%, respiratory depression, nausea, and plied via a mask at a flow rate of 2 L/min. The vomiting were recorded. After the delivery and epidural puncture was performed between the before the neonate took the first breath, two L2 and L3 spaces, and the epidural catheter forceps were used to clamp a segment of the was inserted towards the head. Approximately umbilical cord. Approximately 1 mL of blood 4 mL of 2% lidocaine was injected as the test was extracted with a heparin-coated syringe dose; 5 min later, 8-15 mL of 1% lidocaine and from both the umbilical artery and vein for 0.375% ropivacaine mixture was fractionally blood gas analysis using an i-STAT 200 (Abbott, injected so that the epidural block height US) portable blood gas analysis meter. The pH, reached T8. If the woman’s systolic blood pres- partial arterial oxygen pressure (PaO2), partial sure was < 90 mmHg or < 30% of the basic arterial carbon dioxide pressure (PaCO2), and blood pressure (i.e., hypotension), 5-10 mg of base excess (BE) inside the umbilical artery ephedrine was intravenously administered; if and umbilical vein were tested. The neonates the HR was < 60 beats/min, 0.3-0.5 mg of atro- were evaluated by Apgar scores at 1, 5, and 10 pine was intravenously administered. The min after birth. The Neurologic and Adaptive 18452 Int J Clin Exp Med 2016;9(9):18451-18457 The efficacy and safety of dezocine Table 1. Comparison of general information among the three groups and the time that the MOAA/S _ ( x ± s) score was ≤ 4 points in group Body Body weight Operation Delivery B was longer than those in Group Cases Age (years) weight (kg) gain (kg) time (min) time (s) groups A and C (P < 0.05). No A 20 28.1 ± 4.0 74.0 ± 5.8 16.1 ± 4.8 52 ± 9 399 ± 62 case in any group exhibited an intraoperative MOAA/S B 20 28.0 ± 3.2 70.9 ± 8.7 14.3 ± 6.1 56 ± 11 403 ± 60 score of < 3 points (Table 2). C 20 27.1 ± 4.1 70.1 ± 7.7 15.2 ± 5.8 53 ± 9 384 ± 54 Note: intergroup comparison, P > 0.05. Comparison of neonatal out- comes Table 2. Comparison of visceral traction reaction and MOAA/S There were no significant dif- Score among the three groups ferences (P > 0.05) among Visceral traction reaction MOAA/S Score the three groups for blood gas Group Cases Fineness Time of ≤ 4 indicators from the fetal 0 1 2 3 Mean rate (%) points (min) umbilical arteries and veins a a A 20 8 4 5 3 60 4.21 ± 0.55 22 ± 5 (pH, PaO2, PaCO2 and BE). B 20 12a 5 3 0a 85a 3.54 ± 0.55a,b 36 ± 8a,b The Apgar scores at 1, 5, and C 20 5 4 6 5 45 4.80 ± 0.40 10 ± 4 10 min after birth, likewise, Note: versus the group C, aP < 0.05; compared with the group A, bP < 0.05.
Recommended publications
  • Dezocine Exhibits Antihypersensitivity Activities in Neuropathy Through
    www.nature.com/scientificreports OPEN Dezocine exhibits antihypersensitivity activities in neuropathy through spinal Received: 09 November 2016 Accepted: 19 January 2017 μ-opioid receptor activation and Published: 23 February 2017 norepinephrine reuptake inhibition Yong-Xiang Wang1, Xiao-Fang Mao1, Teng-Fei Li1, Nian Gong1 & Ma-Zhong Zhang2 Dezocine is the number one opioid painkiller prescribed and sold in China, occupying 44% of the nation’s opioid analgesics market today and far ahead of the gold-standard morphine. We discovered the mechanisms underlying dezocine antihypersensitivity activity and assessed their implications to antihypersensitivity tolerance. Dezocine, given subcutaneously in spinal nerve-ligated neuropathic rats, time- and dose-dependently produced mechanical antiallodynia and thermal antihyperalgesia, significantly increased ipsilateral spinal norepinephrine and serotonin levels, and induced less antiallodynic tolerance than morphine. Its mechanical antiallodynia was partially (40% or 60%) and completely (100%) attenuated by spinal μ-opioid receptor (MOR) antagonism or norepinephrine depletion/α2-adrenoceptor antagonism and combined antagonism of MORs and α2-adenoceptors, respectively. In contrast, antagonism of spinal κ-opioid receptors (KORs) and δ-opioid receptors (DORs) or depletion of spinal serotonin did not significantly alter dezocine antiallodynia. In addition, dezocine- delayed antiallodynic tolerance was accelerated by spinal norepinephrine depletion/α2-adenoceptor antagonism. Thus dezocine produces antihypersensitivity activity through spinal MOR activation and norepinephrine reuptake inhibition (NRI), but apparently not through spinal KOR and DOR activation, serotonin reuptake inhibition or other mechanisms. Our findings reclassify dezocine as the first analgesic of the recently proposed MOR-NRI, and reveal its potential as an alternative to as well as concurrent use with morphine in treating pain.
    [Show full text]
  • Supplemental Information
    REVIEW ARTICLE Supplemental Information SEARCH STRATEGIES 7. exp Congenital Abnormalities/ or remifentanil or sufentanil or 8. (defect or cleft or heart defect tapentadol or tramadol or heroin Database: Ovid MEDLINE(R) In- or nalmefene or naloxone or Process and Other Nonindexed or gastroschisis or cryptorchidism or atresia or congenital or clubfoot naltrexone).mp. Citations and Ovid MEDLINE(R), or renal or craniosynostosis or 4. 1 or 2 or 3 1946 to Present hypospadias or malformation or 5. exp pregnancy/or exp pregnancy spina bifida or neural tube defect). outcome/ mp. 1. exp Analgesics, Opioid/ 6. exp teratogenic agent/ 9. 5 or 6 or 7 or 8 2. (opioid* or opiate*).mp. 7. exp congenital disorder/ 10. 4 and 9 3. (alfentanil or alphaprodine or 11. Limit 10 to (English language and 8. (defect or cleft or heart defect buprenorphine or butorphanol humans) or gastroschisis or cryptorchidism or codeine or dezocine or or atresia or congenital or clubfoot dihydrocodeine or fentanyl or Database: Ovid Embase, 1988– or renal or craniosynostosis or hydrocodone or hydromorphone 2016, Week 7 hypospadias or malformation or or levomethadyl or levorphanol spina bifida or neural tube defect). or meperidine or methadone or mp. 1. exp opiate/ morphine or nalbuphine or opium 9. 5 or 6 or 7 or 8 or oxycodone or oxymorphone 2. (opioid* or opiate*).mp. or pentazocine or propoxyphene 10. 4 and 9 3. (alfentanil or alphaprodine or or remifentanil or sufentanil or buprenorphine or butorphanol 11. Limit 10 to (human and English tapentadol or tramadol or heroin or codeine or dezocine or language and (article or book or or nalmefene or naloxone or book series or conference paper dihydrocodeine or fentanyl or “ ” naltrexone).mp.
    [Show full text]
  • VHA/Dod CLINICAL PRACTICE GUIDELINE for the MANAGEMENT of POSTOPERATIVE PAIN
    VHA/DoD CLINICAL PRACTICE GUIDELINE FOR THE MANAGEMENT OF POSTOPERATIVE PAIN Veterans Health Administration Department of Defense Prepared by: THE MANAGEMENT OF POSTOPERATIVE PAIN Working Group with support from: The Office of Performance and Quality, VHA, Washington, DC & Quality Management Directorate, United States Army MEDCOM VERSION 1.2 JULY 2001/ UPDATE MAY 2002 VHA/DOD CLINICAL PRACTICE GUIDELINE FOR THE MANAGEMENT OF POSTOPERATIVE PAIN TABLE OF CONTENTS Version 1.2 Version 1.2 VHA/DoD Clinical Practice Guideline for the Management of Postoperative Pain TABLE OF CONTENTS INTRODUCTION A. ALGORITHM & ANNOTATIONS • Preoperative Pain Management.....................................................................................................1 • Postoperative Pain Management ...................................................................................................2 B. PAIN ASSESSMENT C. SITE-SPECIFIC PAIN MANAGEMENT • Summary Table: Site-Specific Pain Management Interventions ................................................1 • Head and Neck Surgery..................................................................................................................3 - Ophthalmic Surgery - Craniotomies Surgery - Radical Neck Surgery - Oral-maxillofacial • Thorax (Non-cardiac) Surgery.......................................................................................................9 - Thoracotomy - Mastectomy - Thoracoscopy • Thorax (Cardiac) Surgery............................................................................................................16
    [Show full text]
  • Measures and CDS for Safer Opioid Prescribing: a Literature Review
    Measures and CDS for Safer Opioid Prescribing: A Literature Review Measures and CDS for Safer Opioid Prescribing: A Literature Review Executive Summary The U.S. opioid epidemic continues to pose significant challenges for patients, families, clinicians, and public health policy. Opioids are responsible for an estimated 315,000 deaths (from 1999 to 2016) and have caused 115 deaths per day.1 In 2017, the U.S. Department of Health and Human Services declared the opioid epidemic a public health crisis.2 The total economic burden of opioid abuse in the United States has been estimated to be $78.5 billion per year.3 Although providing care for chronic opioid users is important, equally vital are efforts to prevent so-called opioid-naïve patients (patients with no history of opioid use) from developing regular opioid use, misuse, or abuse. However, much remains unclear regarding what role clinician prescribing habits play and what duration or dose of opioids may safely be prescribed without promoting long-term use.4,5 In 2013, ECRI Institute convened the Partnership for Health IT Patient Safety, and its component, single-topic-focused workgroups followed. For this subject, the Electronic Health Record Association (EHRA): Measures and Clinical Decision Support (CDS) for Safer Opioid Prescribing workgroup included members from the Healthcare Information and Management Systems Society (HIMSS) EHRA and the Partnership team. The project was oriented towards exploring methods to enable a synergistic cycle of performance measurement and identifying electronic health record (EHR)/health information technology (IT)–enabled approaches to support healthcare organizations’ ability to assess and measure opioid prescribing.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Effect of Dezocine on the Ratio of Th1/Th2 Cytokines in Patients
    Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Effect of Dezocine on the Ratio of Th1/Th2 Cytokines in Patients Receiving Postoperative Analgesia Following Laparoscopic Radical Gastrectomy: A Prospective Randomised Study Man Feng1 Purpose: To evaluate the effect of dezocine on the postoperative ratio of Th1/Th2 cytokines Qinli Feng2 in patients undergoing laparoscopic radical gastrectomy. Yujie Chen3 Patients and Methods: Sixty patients undergoing laparoscopic radical gastrectomy were Ge Liu 2 randomly divided into two groups (n=30): dezocine group (Group D) and sufentanil group Zhuanglei Gao4 (Group S). They received patient-controlled intravenous analgesia (PCIA) after the operation with either dezocine 0.8 mg/kg (Group D) or sufentanil 2 µg/kg (Group S). Both groups also Juan Xiao5 received ondansetron 8 mg diluted to 100 mL with saline. The primary outcome was the Th1/ Chang Feng 2 Th2 cytokines ratio at predetermined intervals, 30 min before the induction of general 1Department of Pathology, Affiliated anaesthesia and 0, 12, 24 and 48 h after surgery. The secondary endpoints were patients’ Hospital of Shandong Academy of pain scores, measured on a visual analogue scale (VAS) at predetermined intervals (0, 12, 24 Medical Sciences, Shandong First Medical University, Jinan, 250000, People’s and 48 h after surgery), and side effects at follow-up 48 h after surgery. 2 Republic of China; Department of Results: The Th1/Th2 cytokines ratio in Group D was significantly higher than Group Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong S (P<0.05) 12, 24 and 48 h after the operation.
    [Show full text]
  • Levorphanol Use: Past, Present and Future
    Postgraduate Medicine ISSN: 0032-5481 (Print) 1941-9260 (Online) Journal homepage: http://www.tandfonline.com/loi/ipgm20 Levorphanol Use: Past, Present and Future Jeffrey Gudin, Jeffrey Fudin & Srinivas Nalamachu To cite this article: Jeffrey Gudin, Jeffrey Fudin & Srinivas Nalamachu (2015): Levorphanol Use: Past, Present and Future, Postgraduate Medicine, DOI: 10.1080/00325481.2016.1128308 To link to this article: http://dx.doi.org/10.1080/00325481.2016.1128308 Accepted author version posted online: 03 Dec 2015. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ipgm20 Download by: [Jeffrey Fudin] Date: 03 December 2015, At: 20:32 Publisher: Taylor & Francis Journal: Postgraduate Medicine DOI: 10.1080/00325481.2016.1128308 Levorphanol Use: Past, Present and Future Authors: Jeffrey Gudin1, Jeffrey Fudin2, and Srinivas Nalamachu3 Affiliations: 1Director, Pain Management and Palliative Care, Englewood Hospital and Medical Center, Englewood, NJ, and Clinical Instructor, Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY. 2Adjunct Associate Professor, Albany College of Pharmacy and Health Sciences and also Western New England University College of Pharmacy Director, PGY2 Pain Residency and Clinical Pharmacy, Specialist, Pain Management Stratton VA Medical Center, Albany, NY 3President and Medical Director, International Clinical Research Institute, Overland Park, KS, and Adjunct Associate Professor, Temple University School of Medicine, Downloaded by [Jeffrey Fudin] at 20:32 03 December 2015 Philadelphia, PA. Running Title: Levorphanol Use: Past, Present and Future Corresponding Author Srinivas Nalamachu Srinivas R. Nalamachu MD International Clinical Research Institute, Inc.
    [Show full text]
  • Darvon® (Propoxyphene Hydrochloride Capsules, Usp) Pulvules®
    DARVON® (PROPOXYPHENE HYDROCHLORIDE CAPSULES, USP) PULVULES® CIV Rx only WARNINGS • There have been numerous cases of accidental and intentional overdose with propoxyphene products either alone or in combination with other CNS depressants, including alcohol. Fatalities within the first hour of overdosage are not uncommon. Many of the propoxyphene-related deaths have occurred in patients with previous histories of emotional disturbances or suicidal ideation/attempts and/or concomitant administration of sedatives, tranquilizers, muscle relaxants, antidepressants, or other CNS-depressant drugs. Do not prescribe propoxyphene for patients who are suicidal or have a history of suicidal ideation. • The metabolism of propoxyphene may be altered by strong CYP3A4 inhibitors (such as ritonavir, ketoconazole, itraconazole, troleandomycin, clarithromycin, nelfinavir, nefazadone, amiodarone, amprenavir, aprepitant, diltiazem, erythromycin, fluconazole, fosamprenavir, grapefruit juice, and verapamil) leading to enhanced propoxyphene plasma levels. Patients receiving propoxyphene and any CYP3A4 inhibitor should be carefully monitored for an extended period of time and dosage adjustments should be made if warranted (see CLINICAL PHARMACOLOGY – Drug Interactions and WARNINGS, PRECAUTIONS and DOSAGE AND ADMINISTRATION for further information). DESCRIPTION Darvon contains propoxyphene hydrochloride, USP which is an odorless, white crystalline powder with a bitter taste. It is freely soluble in water. Chemically, it is (2S,3R)-(+)-4-(Dimethylamino)-3-methyl-1,2-diphenyl-2-butanol propionate (ester) hydrochloride, which can be represented by the accompanying structural formula. Its molecular weight is 375.94. Each pulvule contains 65 mg (172.9 μmol) propoxyphene hydrochloride. It also contains D & C Red No. 33, F D & C Yellow No. 6, gelatin, magnesium stearate, silicone, starch, titanium dioxide, and other inactive ingredients.
    [Show full text]
  • Use of Chronic Opioid Therapy in Chronic Noncancer Pain CHRONIC NONCANCER PAINNONCANCER CHRONIC Evidence Review
    CLINICAL GUIDELINE FOR THE USE OF CHRONIC OPIOID THERAPY IN CLINICAL GUIDELINE FOR THE USE OF CHRONIC OPIOID THERAPY IN GUIDELINE FOR THE Use of Chronic Opioid Therapy in Chronic Noncancer Pain CHRONIC NONCANCER PAIN Evidence Review The American Pain Society in Conjunction with The American Academy of Pain Medicine EVIDENCE REVIEW APS-AAPM Clinical Guidelines for the Use of Chronic Opioid Therapy in Chronic Noncancer Pain TABLE OF CONTENTS Page Introduction 1 Purpose of evidence review ...................................................................... 1 Background 1 Previous guidelines ................................................................................... 2 Scope of evidence review 3 Key questions............................................................................................ 3 Populations................................................................................................ 7 Interventions.............................................................................................. 8 Outcomes.................................................................................................. 8 Conflict of interest............................................................................................. 10 Methods 10 Literature search and strategy................................................................... 10 Inclusion and exclusion criteria.................................................................. 11 Data extraction and synthesis ..................................................................
    [Show full text]
  • Pharmacological Characterization of Dezocine, a Potent Analgesic Acting As a Κ Partial Agonist and Μ Partial Agonist
    www.nature.com/scientificreports OPEN Pharmacological Characterization of Dezocine, a Potent Analgesic Acting as a κ Partial Agonist and μ Received: 6 November 2017 Accepted: 31 August 2018 Partial Agonist Published: xx xx xxxx Yu-Hua Wang1, Jing-Rui Chai2, Xue-Jun Xu2, Ru-Feng Ye2, Gui-Ying Zan2, George Yun-Kun Liu3, Jian-Dong Long2, Yan Ma4, Xiang Huang2, Zhi-Chao Xiao2, Hu Dong2 & Yu-Jun Wang2 Dezocine is becoming dominated in China market for relieving moderate to severe pain. It is believed that Dezocine’s clinical efcacy and little chance to provoke adverse events during the therapeutic process are mainly attributed to its partial agonist activity at the μ opioid receptor. In the present work, we comprehensively studied the pharmacological characterization of Dezocine and identifed that the analgesic efect of Dezocine was a result of action at both the κ and μ opioid receptors. We frstly found that Dezocine displayed preferential binding to μ opioid receptor over κ and δ opioid receptors. Dezocine, on its own, weakly stimulated G protein activation in cells expressing κ and μ receptors, but in the presence of full κ agonist U50,488 H and μ agonist DAMGO, Dezocine inhibited U50,488H- and DAMGO-mediated G protein activation, indicating that Dezocine was a κ partial agonist and μ partial agonist. Then the in intro results were verifed by in vivo studies in mice. We observed that Dezocine- produced antinociception was signifcantly inhibited by κ antagonist nor-BNI and μ antagonist β-FNA pretreatment, indicating that Dezocine-mediated antinociception was via both the κ and μ opioid receptors.
    [Show full text]
  • Interactions Between Opioid Agonists and Glutamate Receptor Antagonists (Under the Direction of Linda A
    INTERACTIONS BETWEEN OPIOID AGONISTS AND GLUTAMATE RECEPTOR ANTAGONISTS Bradford D. Fischer A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Psychology (Behavioral Neuroscience). Chapel Hill 2008 Approved by: Linda A. Dykstra, Ph.D. Clyde W. Hodge, Ph.D. Mark Hollins, Ph.D. Donald T. Lysle, Ph.D. Mitchell J. Picker, Ph.D. © 2008 Bradford D. Fischer ALL RIGHTS RESERVED ii ABSTRACT BRADFORD D. FISCHER: Interactions between Opioid Agonists and Glutamate Receptor Antagonists (Under the direction of Linda A. Dykstra) The following studies systematically examine the interactive effects of opioids and glutamate receptor antagonists in assays of schedule-controlled responding and thermal nociception. Experiment 1 examines the effects of morphine, buprenorphine, butorphanol, and nalbuphine alone and in combination with an N-Methyl-D-Aspartate (NMDA) receptor antagonist on schedule-controlled responding and thermal nociception. The results from this study indicate that NMDA antagonist/morphine and NMDA antagonist/buprenorphine mixtures produce additive or infra-additive effects on schedule-controlled responding, whereas NMDA antagonist/butorphanol and NMDA antagonist/nalbuphine mixtures produced additive or supra-additive effects. In addition, mixtures of an NMDA antagonist in combination with morphine, buprenorphine, butorphanol, and nalbuphine produce additive or supra-additive effects on thermal nociception. Experiment 2 examines the interactive effects of morphine in combination with metabotropic glutamate (mGlu) receptor antagonists selective for mGlu1, mGlu5, and mGlu2/3 receptor subtypes on schedule-controlled responding and thermal nociception. The results from this experiment suggest that mGlu1, mGlu5, and mGlu2/3 antagonists produce additive effects when administered in combination with morphine on schedule-controlled iii responding.
    [Show full text]
  • 2000 Dialysis of Drugs
    2000 Dialysis of Drugs PROVIDED AS AN EDUCATIONAL SERVICE BY AMGEN INC. I 2000 DIAL Dialysis of Drugs YSIS OF DRUGS Curtis A. Johnson, PharmD Member, Board of Directors Nephrology Pharmacy Associates Ann Arbor, Michigan and Professor of Pharmacy and Medicine University of Wisconsin-Madison Madison, Wisconsin William D. Simmons, RPh Senior Clinical Pharmacist Department of Pharmacy University of Wisconsin Hospital and Clinics Madison, Wisconsin SEE DISCLAIMER REGARDING USE OF THIS POCKET BOOK DISCLAIMER—These Dialysis of Drugs guidelines are offered as a general summary of information for pharmacists and other medical professionals. Inappropriate administration of drugs may involve serious medical risks to the patient which can only be identified by medical professionals. Depending on the circumstances, the risks can be serious and can include severe injury, including death. These guidelines cannot identify medical risks specific to an individual patient or recommend patient treatment. These guidelines are not to be used as a substitute for professional training. The absence of typographical errors is not guaranteed. Use of these guidelines indicates acknowledgement that neither Nephrology Pharmacy Associates, Inc. nor Amgen Inc. will be responsible for any loss or injury, including death, sustained in connection with or as a result of the use of these guidelines. Readers should consult the complete information available in the package insert for each agent indicated before prescribing medications. Guides such as this one can only draw from information available as of the date of publication. Neither Nephrology Pharmacy Associates, Inc. nor Amgen Inc. is under any obligation to update information contained herein. Future medical advances or product information may affect or change the information provided.
    [Show full text]