Dual-Specificity Protein Phosphatase DUSP4 Regulates Response to MEK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
TRIB2 Functions As Novel Oncogene in Colorectal Cancer by Blocking
Hou et al. Molecular Cancer (2018) 17:172 https://doi.org/10.1186/s12943-018-0922-x RESEARCH Open Access TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling Zhenlin Hou1, Kaixuan Guo1, Xuling Sun1, Fuqing Hu1, Qianzhi Chen1, Xuelai Luo1, Guihua Wang1, Junbo Hu1 and Li Sun2* Abstract Background: Cellular senescence is a state of irreversible cell growth arrest and senescence cells permanently lose proliferation potential. Induction of cellular senescence might be a novel therapy for cancer cells. TRIB2 has been reported to participate in regulating proliferation and drug resistance of various cancer cells. However, the role of TRIB2 in cellular senescence of colorectal cancer (CRC) and its molecular mechanism remains unclear. Methods: The expression of TRIB2 in colorectal cancer tissues and adjacent tissues was detected by immunohistochemistry and RT-PCR. The growth, cell cycle distribution and cellular senescence of colorectal cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay, flow cytometry detection and senescence- associated β-galactosidase staining, respectively. Western blot, RT-PCR and luciferase assay were performed to determine how TRIB2 regulates p21. Immunoprecipitation (IP) and chromatin-immunoprecipitation (ChIP) were used to investigate the molecular mechanisms. Results: We found that TRIB2 expression was elevated in CRC tissues compared to normal adjacent tissues and high TRIB2 expression indicated poor prognosis of CRC patients. Functionally, depletion of TRIB2 inhibited cancer cells proliferation, induced cell cycle arrest and promoted cellular senescence, whereas overexpression of TRIB2 accelerated cell growth, cell cycle progression and blocked cellular senescence. Further studies showed that TRIB2 physically interacted with AP4 and inhibited p21 expression through enhancing transcription activities of AP4. -
Mekinist, INN-Trametinib
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT Mekinist 0.5 mg film-coated tablets Mekinist 2 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Mekinist 0.5 mg film-coated tablets Each film-coated tablet contains trametinib dimethyl sulfoxide equivalent to 0.5 mg of trametinib. Mekinist 2 mg film-coated tablets Each film-coated tablet contains trametinib dimethyl sulfoxide equivalent to 2 mg of trametinib. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet Mekinist 0.5 mg film-coated tablets Yellow, modified oval, biconvex, film-coated tablets, approximately 4.8 x 8.9 mm, with “GS” debossed on one face and “TFC” on the opposing face. Mekinist 2 mg film-coated tablets Pink, round, biconvex, film-coated tablets, approximately 7.5 mm, with “GS” debossed on one face and “HMJ” on the opposing face. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Trametinib as monotherapy or in combination with dabrafenib is indicated for the treatment of adult patients with unresectable or metastatic melanoma with a BRAF V600 mutation (see sections 4.4 and 5.1). Trametinib monotherapy has not demonstrated clinical activity in patients who have progressed on a prior BRAF inhibitor therapy (see section 5.1). 4.2 Posology and method of administration Treatment with trametinib should only be initiated and supervised by a physician experienced in the administration of anti-cancer medicinal products. -
MAP2K3 (Human) Recombinant Protein (Q01)
MAP2K3 (Human) Recombinant phosphorylates and thus activates MAPK14/p38-MAPK. Protein (Q01) This kinase can be activated by insulin, and is necessary for the expression of glucose transporter. Expression of Catalog Number: H00005606-Q01 RAS oncogene is found to result in the accumulation of the active form of this kinase, which thus leads to the Regulation Status: For research use only (RUO) constitutive activation of MAPK14, and confers oncogenic transformation of primary cells. The inhibition Product Description: Human MAP2K3 partial ORF ( of this kinase is involved in the pathogenesis of Yersina AAH32478, 1 a.a. - 100 a.a.) recombinant protein with pseudotuberculosis. Multiple alternatively spliced GST-tag at N-terminal. transcript variants that encode distinct isoforms have been reported for this gene. [provided by RefSeq] Sequence: MESPASSQPASMPQSKGKSKRKKDLRISCMSKPPAP NPTPPRNLDSRTFITIGDRNFEVEADDLVTISELGRGAY GVVEKVRHAQSGTIMAVKRIRATVN Host: Wheat Germ (in vitro) Theoretical MW (kDa): 36.63 Applications: AP, Array, ELISA, WB-Re (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Preparation Method: in vitro wheat germ expression system Purification: Glutathione Sepharose 4 Fast Flow Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer. Storage Instruction: Store at -80°C. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 5606 Gene Symbol: MAP2K3 Gene Alias: MAPKK3, MEK3, MKK3, PRKMK3 Gene Summary: The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic and environmental stress, and participates in the MAP kinase-mediated signaling cascade. -
Characterization of TRIB2-Mediated Resistance to Pharmacological Inhibition of MEK
VANESSA MENDES HENRIQUES Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK Oncobiology Master Thesis Faro, 2017 VANESSA MENDES HENRIQUES Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK Supervisors: Dr. Wolfgang Link Dr. Bibiana Ferreira Oncobiology Master Thesis Faro, 2017 Título: “Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK” Declaração de autoria do trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. Copyright Vanessa Mendes Henriques _____________________________ A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. i Acknowledgements First, I would like to thank the greatest opportunity given by professor doctor Wolfgang Link to accepting me into his team, contributing to my scientific and personal progress. Thank You for all Your knowledge and help across the year. A special thanks to Bibiana Ferreira who stayed by me all year and trained me. Thank You for all you taught me, thank you for all your patience and time and all the support. Thank you for all the great times that You provided me. It was an amazing experience to learn and work with You, which made me grow as a scientist and also as a person. -
(AZD6244) in an in Vivo Model of Childhood Astrocytoma
Author Manuscript Published OnlineFirst on October 16, 2013; DOI: 10.1158/1078-0432.CCR-13-0842 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Development, Characterization, and Reversal of Acquired Resistance to the MEK1 Inhibitor Selumetinib (AZD6244) in an In Vivo Model of Childhood Astrocytoma Hemant K. Bid1, Aaron Kibler1, Doris A. Phelps1, Sagymbek Manap1, Linlin Xiao1, Jiayuh Lin1, David Capper2, Duane Oswald1, Brian Geier1, Mariko DeWire1,5, Paul D. Smith3, Raushan T. Kurmasheva1, Xiaokui Mo4, Soledad Fernandez4, and Peter J. Houghton1*. 1Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205 2Institut of Pathology, Department Neuropathology, Ruprecht-Karls University and Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany 3Astrazeneca Ltd., Oncology iMed, Macclesfield, U.K. 4Center for Biostatistics, The Ohio State University, Columbus, OH 43221 5 Present address: Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 Correspondence to Peter J. Houghton, Ph.D. Center for Childhood Cancer & Blood Diseases Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205 Ph: 614-355-2633 Fx: 614-355-2792 [email protected] Running head: Acquired resistance to MEK Inhibition in astrocytoma models. Conflict of Interest Statement: The authors consider that there is no actual or perceived conflict of interest. Dr. Paul D. Smith is an employee of Astrazeneca. 1 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 16, 2013; DOI: 10.1158/1078-0432.CCR-13-0842 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Could Hbx Protein Expression Affect Signal Pathway Inhibition by Gefitinib Or Selumetinib, a MEK Inhibitor, in Hepatocellular Carcinoma Cell Lines?
ORIGINAL ARTICLE Oncology & Hematology DOI: 10.3346/jkms.2011.26.2.214 • J Korean Med Sci 2011; 26: 214-221 Could HBx Protein Expression Affect Signal Pathway Inhibition by Gefitinib or Selumetinib, a MEK Inhibitor, in Hepatocellular Carcinoma Cell Lines? Yoon Kyung Park1, Kang Mo Kim1, Hepatitis B virus X (HBx) protein has been known to play an important role in development Young-Joo Lee2, Ki-Hun Kim2, of hepatocellular carcinoma (HCC). The aim of this study is to find out whether HBx Sung-Gyu Lee2, Danbi Lee1, protein expression affects antiproliferative effect of an epidermal growth factor receptor- Ju Hyun Shim1, Young-Suk Lim1, tyrosine kinase (EGFR-TK) inhibitor and a MEK inhibitor in HepG2 and Huh-7 cell lines. We 1 1 Han Chu Lee , Young-Hwa Chung , established HepG2 and Huh-7 cells transfected stably with HBx gene. HBx protein 1 1 Yung Sang Lee , and Dong Jin Suh expression increased pERK and pAkt expression as well as β-catenin activity in both cells. Departments of 1Internal Medicine and 2Surgery, Gefitinib (EGFR-TK inhibitor) inhibited pERK and pAkt expression andβ -catenin activity in Asan Medical Center, University of Ulsan College of both cells. Selumetinib (MEK inhibitor) reduced pERK level and β-catenin activity but pAkt Medicine, Seoul, Korea expression was rather elevated by selumetinib in these cells. Reduction of pERK levels was much stronger with selumetinib than gefitinib in both cells. The antiproliferative efficacy Received: 19 July 2010 Accepted: 2 November 2010 of selumetinib was more potent than that of gefitinib. However, the antiproliferative effect of gefitinib, as well as selumetinib, was not different between cell lines with or Address for Correspondence: without HBx expression. -
Successful Chemotherapy Is Possible for Seemingly Inoperable Anaplastic Thyroid Cancer
® Clinical Thyroidology for the Public VOLUME 12 | ISSUE 12 | DECEMBER 2019 THYROID CANCER Successful chemotherapy is possible for seemingly inoperable anaplastic thyroid cancer BACKGROUND form of standard chemotherapy and 2 received another While the vast majority of thyroid cancers are slow tyrosine kinase inhibitor called pembrolizumab. Of the 6 growing and have an excellent prognosis, anaplastic patients that had surgery after this treatment, 4 patients thyroid cancer, which makes up <1% of all thyroid cancer, had the entire primary cancer removed and the other 2 is one of the most aggressive of all cancers, with a survival patients only had microscopic pieces of cancer left after averaging ~6 months after diagnosis. Surgery, radiation the surgery. After the surgery, 5 of 6 patients received and single drug chemotherapy is all ineffective in most standard chemotherapy and radiation to the surgical area. cases. The aim of this study is to study if combination Of the 6 patients, 4 patients had no evidence of cancer at chemotherapy will make previously inoperable anaplastic the last check, some over 2 years after surgery. The 2 other thyroid cancers safe to remove with surgery. patients did pass away from anaplastic cancer; however, there was no re-growth of cancer in the area where surgery THE FULL ARTICLE TITLE occurred. Wang JR et al 2019 Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAFV600E- WHAT ARE THE IMPLICATIONS mutated anaplastic thyroid carcinoma. Thyroid 29:1036– OF THIS STUDY? 1043. PMID: 31319771. In selected patients with anaplastic thyroid cancer with the BRAF V600E mutation, treatment with dabrafenib SUMMARY OF THE STUDY and trametinib may increase the chance of having a In this study from the MD Anderson Cancer Center successful surgery of the primary tumor. -
Center for Drug Evaluation and Research
CENTER FOR DRUG EVALUATION AND RESEARCH Approval Package for: APPLICATION NUMBER: 125554Origs051 Trade Name: OPDIVO Generic or Proper nivolumab Name: Sponsor: Bristol-Myers Squibb Company Approval Date: March 05, 2018 Indication: Opdivo is a programmed death receptor-1 (PD-1) blocking antibody indicated for the treatment of: • patients with BRAF V600 wild-type unresectable or metastatic melanoma, as a single agent. (1.1) • patients with BRAF V600 mutation-positive unresectable or metastatic melanoma, as a single agent.a (1.1) • patients with unresectable or metastatic melanoma, in combination with ipilimumab.a (1.1) • patients with melanoma with lymph node involvement or metastatic disease who have undergone complete resection, in the adjuvant setting. (1.2) • patients with metastatic non-small cell lung cancer and progression on or after platinum-based chemotherapy. Patients with EGFT or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO. (1.3) • patients with advanced renal cell carcinoma who have received prior anti-angiogenic therapy. (1.4) • adult patients with classical Hodgkin lymphoma that has relapsed or progressed afterb: (1.5) o autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin, or o 3 or more lines of systemic therapy that includes autologous HSCT. • patients with recurrent or metastatic squamous cell carcinoma of the head and neck with disease progression on or after a platinum-based therapy (1.6) • patients with locally advanced or metastatic urothelial carcinoma whob: o have disease progression during or following platinum-containing chemotherapy o have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum- containing chemotherapy. -
MET Or NRAS Amplification Is an Acquired Resistance Mechanism to the Third-Generation EGFR Inhibitor Naquotinib
www.nature.com/scientificreports OPEN MET or NRAS amplifcation is an acquired resistance mechanism to the third-generation EGFR inhibitor Received: 5 October 2017 Accepted: 16 January 2018 naquotinib Published: xx xx xxxx Kiichiro Ninomiya1, Kadoaki Ohashi1,2, Go Makimoto1, Shuta Tomida3, Hisao Higo1, Hiroe Kayatani1, Takashi Ninomiya1, Toshio Kubo4, Eiki Ichihara2, Katsuyuki Hotta5, Masahiro Tabata4, Yoshinobu Maeda1 & Katsuyuki Kiura2 As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from geftinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplifcation was detected in naquotinib-resistant cells derived from geftinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly benefcial efect in resistant cells with NRAS amplifcation, but the combination of MEK inhibitors and osimertinib had limited efects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little efect on osimertinib-resistant cells. -
Distinct Transcriptional Programming Drive Response to MAPK Inhibition in BRAF -Mutant Melanoma Patient-Derived Xenografts
Published OnlineFirst September 16, 2019; DOI: 10.1158/1535-7163.MCT-19-0028 Cancer Biology and Translational Studies Molecular Cancer Therapeutics Distinct Transcriptional Programming Drive Response to MAPK Inhibition in BRAFV600-Mutant Melanoma Patient-Derived Xenografts Tianshu Feng, Javad Golji, Ailing Li, Xiamei Zhang, David A. Ruddy, Daniel P. Rakiec, Felipe C. Geyer, Jane Gu, Hui Gao, Juliet A.Williams, Darrin D. Stuart, and Matthew J. Meyer Abstract Inhibitors targeting BRAF and its downstream kinase MEK are preferentially sensitive to MAPK inhibition. These gene- produce robust response in patients with advanced BRAFV600- expression programs are somewhat similar to the MITF-high mutant melanoma. However, the duration and depth of and -low phenotypes described in cancer cell lines, but response vary significantly between patients; therefore, pre- demonstrate an inverse relationship with drug response. dicting response a priori remains a significant challenge. Here, This suggests a discrepancy between in vitro and in vivo we utilized the Novartis collection of patient-derived xeno- experimental systems that warrants future investigations. grafts to characterize transcriptional alterations elicited by Finally, BRAFV600-mutant melanoma relies on either MAPK BRAF and MEK inhibitors in vivo, in an effort to identify or alternative pathways for survival under BRAF and MEK mechanisms governing differential response to MAPK inhibi- inhibition in vivo, which in turn predicts their response to tion. We show that the expression of an MITF-high, "epithelial- further pathway suppression using a combination of BRAF, like" transcriptional program is associated with reduced MEK, and ERK inhibitors. Our findings highlight the inter- sensitivity and adaptive response to BRAF and MEK inhibitor tumor heterogeneity in BRAFV600-mutant melanoma, and treatment. -
Application of a MYC Degradation
SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser .