Temperature and Solvent Dependence of 13 C—H Spin-Spin Coupling Constant JCH in Ethyl Formate
Total Page:16
File Type:pdf, Size:1020Kb
Voraussetzung für die statistisch-mechanische Be- sentlichen des vielatomigen Ions) gelten. Für die handlung von „Ubergangszuständen" nach der Reaktion zwischen dem Molekel-Ion und der CD4- Eyring-Theorie. Man darf deshalb den Schluß aus Molekel, bei der die relative kinetische Energie bei unseren Ergebnissen ziehen, daß die Theorie vom gleicher Geschwindigkeit viel größer ist als bei der Übergangszustand unterhalb 1 eV tatsächlich an- Reaktion mit D2 (und entsprechend der Betrag der wendbar ist, mit Ausnahme einiger einfacher Sy- zu verteilenden Energie), entnimmt man aus Abb. 1 steme, wie das erwähnte System Ar+ + D2 . eine Übertragungsenergie von ca. 4 eV des Ions im Bei einer Energie des einfallenden Ions von 40 eV Laborsystem. Die Zeit zur Relaxation wird unter befindet man sich gerade im Übergangsbereich zwi- diesen Umständen etwa 6,10_14sec. Jedenfalls zei- schen dem Stripping- und Komplex-Mechanismus für gen diese einfachen Absdiätzungen, daß in viel- die Reaktion nach Gl. (5) (Abb. 3). Die Geschwin- atomigen Reaktionspartnern die Zeit zur Verteilung digkeit des Ions beträgt hier 1,6-106 cm-sec-1. der Schwingungsenergie auf die verschiedenen Frei- Nimmt man an, daß die Wechselwirkung mit der heitsgrade etwas kleiner oder etwa gleich der Zeit D2-Targetmolekel im wesentlichen über einen Ab- ist, die für eine Schwingungsperiode in den betei- stand von 3 Ä erfolgt, errechnet sich eine Stoßzeit ligten Freiheitsgraden benötigt wird. von 2-10~14 sec. Diese Zeit mag als rohe Abschät- Der Deutschen Forschungsgemeinschaft danken wir zung der Zeit zur Relaxation der überschüssigen für die Unterstützung dieser Untersuchungen. Einer von Energie zwischen dem kritischen und den übrigen uns (D. H.) ist der Firma CIBA für die Gewährung Freiheitsgraden der reagierenden Teilchen (im we- eines Stipendiums sehr zu Dank verbunden. Temperature and Solvent Dependence of 13C—H Spin-Spin Coupling Constant JCH in Ethyl Formate ERKKI RAHKAMAA and JUKKA JOKISAARI Laboratory of Molecular Spectroscopy, Department of Physics, University of Oulu, Oulu, Finland (Z. Naturforsch. 23 a, 2094—2097 [1968]; received 20 September 1968) PMR spectra of pure ethyl formate and its solutions in carbon tetrachloride, carbon disulfide and acetone indicate that both the directly bonded 13C —H coupling constant and the chemical shift of the formyl group vary with temperature, solvent and concentration. Some aspects of the tem- perature and solvent dependence of /CH and <5 can be related to the intermolecular hydrogen bonding involving the formyl proton. The possibility of the existence of other factors must however not be forgotten. The temperature and solvent effects on the 13C — H ent vibrational states in the C — H bond, and the coupling constant have been studied by many au- latter dispersion forces and self-association. thors1-8. However, there is no adequate theory to According to EVANS 1, there is a qualitative re- explain these effects. lation between the increase in /CH of chloroform LASZLO 4 has pointed out that the temperature and the proton acceptor strength of the solvent mo- dependence of /QH could be explained by a com- lecules. The experimental results of DOUGLAS and bination of intramolecular and intermolecular ef- DIETZ 6 are in accordance with the Evans' hypothese. fects. The former could be the excitation of differ- Some investigators 9 have pointed out that the sol- 1 D. F. EVANS, J. Chem. Soc. 1963, 5575. 6 A. W. DOUGLAS and D. DIETZ, J. Chem. Phys. 46, 1214 2 K. FREI and H. J. BERNSTEIN, J. Chem. Phys. 38, 1216 [1967]. [1963]. 7 W. H. DE JEU, H. ANGAD GAUR, and J. SMIDT, Ree. Trav. 3 C. MARTIN, B. CASTRO, and M. MARTIN, C. R. Acad. Sei. Pa- Chim. Pays-Bas 84, 1621 [1965]. ris 261, 395 [1965]. 8 V. S. WATTS, J. LOEMKER, and J. H. GOLDSTEIN, J. Mol. 4 P. LASZLO, Bull. Soc. Chim. France 1966, 558. Spectr. 17, 348 [1965]. 5 C. L. BELL and S. S. DANYLUK, J. Amer. Chem. Soc. 88, 2344 9 S. L. SMITH and A. M. IHRIG, J. Chem. Phys. 46,1181 [1967]. [1966]. References on the earlier papers concerning intermolecular electric fields are collected here. vent mechanism is the polarization through electric to internal TMS. The variation of /CH and <5 with fields created by neighbouring molecules. temperature can be seen in Fig. 1. The relationship Coupling constants Jen for a series of compounds between /CH and 6 in pure ethyl formate can be containing the formyl group have been measured by found in Fig. 2. In the relatively concentrated so- MULLER 10. He has considered the influence of dif- lutions studied, as for instance in pure liquid, the ferent molecular parameters as hybridisation, bond lowering of temperature increases both the coupling length, and polarity of the C — H bond, on /CH • constant /CH and the chemical shifts c5 and ^TMS as Recently HAYAMIZU and YAMAMOTO 11 studied ethyl shown in Tables 2 and 3. formate in the solvents CC14, CS2, CH3OH, and It can clearly be seen that both /ch and (3 de- C6H6 but did not find any significant changes of the crease with dilution in carbon disulfide and carbon long range proton — proton coupling constants. tetrachloride at each temperature. In acetone solu- In this work the temperature and solvent depen- dence of the 13C — H coupling constant and the pro- ton chemical shifts of the formyl group in pure ethyl formate and its solutions in carbon tetrachlo- ride, carbon disulfide and acetone will be reported. Experimental The ethyl formate, carbon disulfide and carbon tetra- chloride used, were commercially available products and the PMR spectra showed no traces of impurities. -L0 -20 0 20 40 60 T(°C) Acetone was dried over molecular sieves and finally Fig. 1. Coupling constant /CH and chemical shift <5 of ethyl distilled. Samples were prepared in dry nitrogen by formate as a function of temperature. The lower curve shows weighing solute and solvent into a PMR sample tube, the variation of /CH and the upper the variation of the chemi- and adding a small amount of tetramethylsilane (TMS) cal shift <5 between the formyl and methyl protons. to serve as internal calibration reference. Samples were frozen in liquid nitrogen and thereafter sealed with a T° C J CH Hz <5* Hz hot flame. The accuracy of concentrations was ± 1 mole ^TMS HZ per cent. The spectra were recorded with a Varian + 73 224.5 405.0 480.2 Associates A-60 spectrometer operating at 60 MHz. + 61 224.8 — — Sample temperatures were regulated by a Varian V- + 55 225.1 405.4 480.8 6040 temperature controller and measured with Varian- + 54 225.0 405.5 481.0 supplied calibration samples. Temperatures are accu- + 33 225.5 c 406.0 481.2d rate to + 3 °C. Calibrations were performed by the + 26 225.6 406.4 481.9 common sideband technique, using a variable frequency + 5 225.7 407.0 482.4 audio oscillator Hewlett-Packard 241 A constantly + 3 226.2 407.4 483.5 - 15 226.7 408.2 485.0 monitored by an Advance model TC 4 counter. The -22 226.7 409.5 485.0 values of /CH are averages of 3 — 5 scans in both sweep - 35 227.2 411.0 487.0 directions and are accurate to + 0.2 Hz. The accuracy -48 228.1 411.8 489.0 of chemical shifts is ± 0.5 Hz. a Chemical shift of the formyl proton relative to the methyl protons of ethyl formate. Results b Chemical shift of the formyl proton relative to internal TMS. C 12 The values of the coupling constant /CH of the MALINOWSKI et al. have measured /CH = 225.6 Hz from the PMR spectrum at room temperature. formyl group of ethyl formate at different tempera- D HAYAMIZU and YAMAMOTO 11 have found <5TMS = 8.021 ppm tures are presented in Table 1. Shown in this Table = (5/3) '481.3 Hz using a 100 MHz spectrometer at room temperature. are also the values of the chemical shift of the for- myl proton, measured at the same temperatures, Table 1. Coupling constant /CH and proton chemical shifts of formyl group for pure ethyl formate at different tempera- relative to the methyl protons of ethyl formate and tures. 10 N. MULLER, J. Chem. Phys. 36, 359 [1961]. 12 E. MALINOWSKI, J. P. LARMAN, and L. Z. POLLARA, J. Amer. 11 K. HAYAMIZU and O. YAMAMOTO, J. Mol. Spectr. 23, 121 Chem. Soc. 84,2649 [1962]. [1967]. T °C C mole% JCH HZ Ö Hz <5TMS Hz + 73 60 224.6 406.0 481.0 39 224.6 406.0 480.6 25 224.7 407.0 481.4 11 — 407.4 482.2 + 55 60 225.1 406.6 481.6 39 225.2 407.0 481.8 25 225.2 408.6 483.2 11 — 408.7 483.1 + 33 60 225.5 407.0 481.5 Fig. 2. The chemical shift <5 versus /CH for pure ethyl formate. 39 225.6 408.4 483.2 25 225.6 409.2 483.6 11 — 409.6 484.3 T °C C mole% JCH Hz Ö Hz JCH Hz Ö Hz carbon disulfide carbon tetra- + 5 60 225.8 409.6 484.8 chloride 39 225.8 411.0 486.2 25 226.1 411.6 486.5 + 86 60 224.4 400.8 11 — 412.2 487.2 40 — — 223.9 398.8 20 — — 223.7 398.2 -22 60 226.7 411.0 486.5 39 226.8 412.2 487.6 + 54 60 224.5 402.4 224.5 402.2 25 226.8 412.6 488.0 40 224.3 401.0 224.3 400.5 11 — 414.3 489.2 20 224.2 398.5 223.9 399.8 -35 60 227.3 412.5 488.4 + 26 60 225.1 403.4 224.9 402.6 39 227.4 413.2 489.0 40 224.6 400.6 224.6 400.0 25 227.4 414.0 489.2 20 224.2 399.2 224.6 400.0 11 — 415.0 490.2 + 3 60 225.9 405.5 225.9 405.0 Table 3.