November 7, 1997 22:2 Annual Reviews AR23-13 AR23-13 Annu. Rev. Fluid Mech. 1997. 29:435–72 Copyright c 1997 by Annual Reviews Inc. All rights reserved THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE K. R. Sreenivasan School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540; e-mail:
[email protected] R. A. Antonia Department of Mechanical Engineering, University of Newcastle, Newcastle, Australia 2038 KEY WORDS: small-scale intermittency, intermittency models, geometry and kinematics of small-scale turbulence I have sometimes thought that what makes a man’s work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein’s philosophy ABSTRACT Small-scale turbulence has been an area of especially active research in the re- cent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kine- Annu. Rev. Fluid Mech. 1997.29:435-472. Downloaded from arjournals.annualreviews.org matics of small-scale structure—the latter aspect coming largely from the direct by Abdus Salam International Centre for Theoretical Physics on 03/10/08. For personal use only. numerical simulation of homogeneous turbulence in a periodic box. 1. INTRODUCTION 1.1 Preliminary Remarks Fully turbulent flows consist of a wide range of scales, which are classified somewhat loosely as either large or small scales.