Herbs and Properties Related to Antibiotic Resistance KEY: Green Colored Cells May Offer Benefit

Total Page:16

File Type:pdf, Size:1020Kb

Herbs and Properties Related to Antibiotic Resistance KEY: Green Colored Cells May Offer Benefit Herbs and Properties Related to Antibiotic Resistance KEY: Green colored cells may offer benefit Antimicrobial Efflux Pump Quorum Sensing Bacterial Adhesion Bacterial Cell Wall Bacterial DNA Common Name Biofilm Disruptor Enzyme inhibition Immune Stimulation Active constituents Pairing with ABX (if specified in research) Considerations Activity Inhibition Inhibition Inhibitor Disruption Alteration artemesinin, caffeoylquinic acid, chrysoplenol, Artemisia pairs well with berberine, honeysuckle. chrysoplenetin Basil increased susceptibility of s. aureus, p. aeruginosa & e. coli to ciprofloxacin by 33x. Additive with berberine, hydrastine, canadensine, 5-MHC, Goldenseal is an at-risk species. Choose Mahonia, Berberis Family ampicillin, erythromycin, methicillin, norfloxacin. pheophorbide a, flavanolignan 3, porphyrin 3 Synergistic with oxacillin. Doesn’t combine well Berberis or Coptis when possible. with tetracycline Berries Berry Extracts (gallic acid) Bitter orange can counter gm - efflux pumps Calamus/Sweet flag ß lactamase Catnip Chinese Skullcap Bacterial & Viral ß lactamase baicalin, baicalein, methoxyflavones, F36 ß lactams, ciprofloxacin, gentamicin, tetracycline clindamycin, ampicillin, tetracycline, penicillin, Cinnamon cinnamaldehyde Histaminic erythromycin, novobiocin. Helpful in C. difficile Clove Cranberry Curcumin oxacillin, ampicillin, ciprofloxacin, norfloxacin Dog Rose tellimagrandin I, rugosin B ß lactam Gm +, Gm-, yeast, Elderberry virus Strong, Gm + ß lactamase, DNA RNA synthesis Pairs with vancomycin, cefoperazone, cefoxitin, Garlic allicin and Gm - synthase inhibitor oxacillin Geranium polyacylated neohesperidosides berberine, ciprofloxacin, norfloxacin, rhein Ginger zingiberine, gingerol (fresh)/shogaol (dried) tetracycline Gotu kola can counter gm - efflux pumps Grapefruit juice furocoumarins, limonoids 20 fold decreased MIC of norfloxacin against Grapefruit oil MRSA Grapefruit Seed Extract broad spectrum augmentin, ß lactams, carbapenems, cefazolin, cefmetazole, cefoxitin, norfloxacin, levofloxacin, Green Tea moderate, gm + ß lactamase ECG, CG, EGCG, myricetin tetracycline. reduced MIC of oxacillin from 256/512 to 1-4mg/L Honeysuckle Hops Kale Lemongrass Can increase allergenic potential antibacterial, antiviral, glycyrrhetinic acid, glycyrrhizin, polymyxin B, tobramycin, gentamycin, amikacin Licorice Strong Can raise BP anti fungal liquiritigenin,licochalcones A & E, glabridin MIC reduced by 32-64x Milk Thistle silybin ampicillin, oxacillin Myrecetin (found in tea, berries, vegetables and other foods) Myrrh can counter gm - efflux pumps Nootka Cypress Cone totarol, diterpenes 256 fold potentiation of methicillin against MRSA Oregano Peppermint combines well with green tea chloramphenicol, gentamicin, ampilillin, Pomegranate tetracycline, oxacillin against MRSA & MSSA Quercetin fluconazole Resveratrol DNA synthase ahminoglycosides Rosemary carnosic acid, carnosol erythromycin, fluoroquinolones, tetracycline ß-thujone, trans-chrysanthenyl acetate, cichoric Tansy acetylcholinesterase acid, volatile oils Thyme thymol, carvacrol Sustainability issues: Harvest only from wind-fallen Usnea Strong, Gm + usnic acid, polysaccharides lichen 2.
Recommended publications
  • Multi-Class Determination of 64 Illicit Compounds in Dietary Supplements Using Liquid Chromatography–Tandem Mass Spectrometry
    molecules Article Multi-Class Determination of 64 Illicit Compounds in Dietary Supplements Using Liquid Chromatography–Tandem Mass Spectrometry Dasom Shin, Hui-Seung Kang *, Hyungsoo Kim and Guiim Moon New Hazardous Substances Division, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; [email protected] (D.S.); [email protected] (H.K.); [email protected] (G.M.) * Correspondence: [email protected] Received: 11 August 2020; Accepted: 17 September 2020; Published: 24 September 2020 Abstract: In this work, liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was developed and validated for screening and confirmation of 64 illicit compounds in dietary supplements. The target compounds were illegally used pharmaceutical drugs, prohibited compounds, and not authorized ingredients for different therapeutics (sexual enhancement, weight loss, muscular strengthening, and relaxing products). The validation procedure was performed to evaluate selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision according to the Association of Official Analytical Chemists guidelines. The linearity was >0.98 in the range of 1 1 0.5–200 µg L− . The LOQs were in the range 1–10 µg kg− for all target compounds. The accuracy (expressed as recovery) was 78.5–114%. The precision (expressed as the relative standard deviation) was below 9.15%. The developed method was applied for the determination of illicit compounds in dietary supplements collected from websites. As a result, the total detection rate was 13.5% (27 samples detected in 200 samples). The concentrations of detected samples ranged from 0.51 1 to 226 mg g− .
    [Show full text]
  • Réglementation De La Pharmacie
    R E C U E I L D E T E X T E S S U R L A P H A R M A C I E Mis à jour le 13 février 2017 par l’Inspection de la pharmacie P R É A M B U L E La réglementation relative à la pharmacie en vigueur en Nouvelle-Calédonie résulte de la coexistence des dispositions adoptées par la Nouvelle-Calédonie au titre de ses compétences en matières d’hygiène publique, de santé et de professions de la pharmacie1, et de celles adoptées par l’Etat au titre de ses compétences en matières de garanties des libertés publiques, de droit civil et de droit commercial2. Sur le contenu du recueil En 1954, la Nouvelle-Calédonie s’est vue étendre les articles L. 511 à L. 520 et L. 549 à L. 665 de l’ancien Livre V relatif à la Pharmacie du code de la santé publique métropolitain par la loi n° 54-418 du 15 avril 1954 étendant aux territoires d'outre-mer, au Togo et au Cameroun certaines dispositions du Code de la santé publique relatives à l'exercice de la pharmacie3, dont les modalités d’application ont été fixées par le décret modifié n° 55-1122 du 16 août 1955 fixant les modalités d'application de la loi n° 54-418 du 15 avril 1954 étendant aux territoires d'outre-mer, au Togo et au Cameroun certaines dispositions du code de la santé publique relatives à l'exercice de la pharmacie4. Depuis sont intervenues la loi- cadre Defferre5, la loi référendaire de 19886 et la loi organique n° 99-209 du 19 mars 1999 dont les apports ont eu pour résultat le transfert de ces articles de la compétence de l’Etat à la compétence de la Nouvelle-Calédonie, permettant à celle-ci de s’en approprier et de les modifier à sa guise par des délibérations du congrès de la Nouvelle-Calédonie7.
    [Show full text]
  • Intravenous Palonosetron Increases the Incidence of Qtc Prolongation During Sevoflurane General Anesthesia for Laparotomy
    Korean J Anesthesiol 2013 November 65(5): 397-402 Clinical Research Article http://dx.doi.org/10.4097/kjae.2013.65.5.397 Intravenous palonosetron increases the incidence of QTc prolongation during sevoflurane general anesthesia for laparotomy Jeong Jin Min, Yongjae Yoo, Tae Kyong Kim, and Jung-Man Lee Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea Background: Palonosetron is a recently introduced 5-hydroxytryptamine-3 (5-HT3) receptor antagonist useful for postoperative nausea and vomiting prophylaxis. However, 5-HT3 receptor antagonists increase the corrected QT (QTc) interval in patients who undergo general anesthesia. This retrospective study was performed to evaluate whether palono- setron would induce a QTc prolongation in patients undergoing general anesthesia with sevoflurane. Methods: We reviewed a database of 81 patients who underwent general anesthesia with sevoflurane. We divided the records into palonosetron (n = 41) and control (n = 40) groups according to the use of intraoperative palonosetron, and analyzed the electrocardiographic data before anesthesia and 30, 60, 90, and 120 min after skin incision. Changes in the QTc interval from baseline, mean blood pressure, heart rate, body temperature, and sevoflurane concentrations at each time point were compared between the two groups. Results: The QTc intervals at skin incision, and 30, 60, 90, and 120 min after the skin incision during general anesthesia were significantly longer than those at baseline in the two groups (P < 0.001). The changes in the QTc intervals were not different between the two groups (P = 0.41). However, six patients in the palonosetron group showed a QTc interval > 500 ms 30 min after skin incision, whereas no patient did in the control group (P = 0.01).
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]
  • Antibacterial Effect of Sevoflurane and Isoflurane Ángel Martínez-Monsalve3 María Dolores Crespo- Sánchez1
    Original María Martínez-Serrano1 Manuel Gerónimo-Pardo2 Antibacterial effect of sevoflurane and isoflurane Ángel Martínez-Monsalve3 María Dolores Crespo- Sánchez1 1Servicio de Microbiología y Parasitología. Complejo Hospitalario Universitario de Albacete. 2Servicio de Anestesiología y Reanimación. Complejo Hospitalario Universitario de Albacete. 3Servicio de Cirugía Vascular. Complejo Hospitalario Universitario de Albacete. ABSTRACT property in vivo. This might then allow these agents to be con- sidered as rescue treatment against multidrug resistant patho- Introduction. Multidrug resistant bacteria are increasing gens, including a topical use in infected wounds. worldwide and therapeutic options are limited. Some anaes- Key words: Sevoflurane, Isoflurane, Anaesthetics, Inhala- thetics have shown antibacterial activity before. In this study, tion, Anti-Infective Agents. we have investigated the antibacterial effect of the halogen- ated anaesthetic agents sevoflurane and isoflurane against a range of resistant pathogens. Actividad antibacteriana de sevoflurano e Methods. Two experiments were conducted. In the first, isoflurano bacterial suspensions of both ATCC and resistant strains of Staphylococcus aureus, Escherichia coli and Pseudomonas RESUMEN aeruginosa were exposed to liquid sevoflurane and isoflurane during 15, 30 and 60 minutes. In the second experiment clinical Introducción. Las bacterias multirresistentes están au- resistant strains of E. coli, Klebsiella pneumoniae, Enterobac- mentando en todo el mundo y las opciones terapéuticas son ter cloacae, P. aeruginosa, Acinetobacter baumannii, S. aureus, limitadas. Algunos anestésicos han mostrado actividad an- and Enterococcus faecium were studied. Previously inoculated tibacteriana previamente. En este estudio hemos investigado agar plates were irrigated with the halogenated anaesthet- dicha actividad en los anestésicos halogenados sevoflurano e ic agents and these were left to evaporate before the plates isoflurano frente a un grupo de patógenos resistentes.
    [Show full text]
  • Antibacterial Activity and Mechanisms of Essential Oil from Citrus Medica L
    molecules Article Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis Ze-Hua Li 1,2, Ming Cai 2,*, Yuan-Shuai Liu 3, Pei-Long Sun 2,* and Shao-Lei Luo 2 1 College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] 2 Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] 3 Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong; [email protected] * Correspondence: [email protected] (P.-L.S.); [email protected] (M.C.); Tel.: +86-0571-88320388 (P.-L.S.); +86-0571-88320345 (M.C.) Academic Editor: Francesca Mancianti Received: 29 March 2019; Accepted: 18 April 2019; Published: 22 April 2019 Abstract: In this work, antibacterial activity of finger citron essential oil (FCEO, Citrus medica L. var. sarcodactylis) and its mechanism against food-borne bacteria were evaluated. A total of 28 components in the oil were identified by gas chromatography-mass spectrometry, in which limonene (45.36%), γ-terpinene (21.23%), and dodecanoic acid (7.52%) were three main components. For in vitro antibacterial tests, FCEO exhibited moderately antibacterial activity against common food-borne bacteria: Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus. It showed a better bactericidal effect on Gram-positive bacteria than Gram-negative. Mechanisms of the antibacterial action were investigated by observing changes of bacteria morphology according to scanning electron microscopy, time-kill analysis, and permeability of cell and membrane integrity. Morphology of tested bacteria was changed and damaged more seriously with increased concentration and exposure time of FCEO.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0296.191 A1 PATEL Et Al
    US 20140296.191A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0296.191 A1 PATEL et al. (43) Pub. Date: Oct. 2, 2014 (54) COMPOSITIONS OF PHARMACEUTICAL (52) U.S. Cl. ACTIVES CONTAINING DETHYLENE CPC ............... A61K 47/10 (2013.01); A61 K9/0019 GLYCOL MONOETHYLETHER OR OTHER (2013.01); A61 K9/0048 (2013.01); A61 K ALKYL DERVATIVES 45/06 (2013.01) USPC ........... 514/167: 514/177; 514/178: 514/450; (71) Applicant: THEMIS MEDICARE LIMITED, 514/334: 514/226.5: 514/449; 514/338; Mumbai (IN) 514/256; 514/570; 514/179; 514/174: 514/533; (72) Inventors: Dinesh Shantilal PATEL, Mumbai (IN); 514/629; 514/619 Sachin Dinesh PATEL, Mumbai (IN); Shashikant Prabhudas KURANI, Mumbai (IN); Madhavlal Govindlal (57) ABSTRACT PATEL, Mumbai (IN) (73) Assignee: THEMIS MEDICARE LIMITED, The present invention relates to pharmaceutical compositions Mumbai (IN) of various pharmaceutical actives, especially lyophilic and hydrophilic actives containing Diethylene glycol monoethyl (21) Appl. No.: 14/242,973 ether or other alkyl derivatives thereofas a primary vehicle and/or to pharmaceutical compositions utilizing Diethylene (22) Filed: Apr. 2, 2014 glycol monoethyl ether or other alkyl derivatives thereofas a primary vehicle or as a solvent system in preparation of Such (30) Foreign Application Priority Data pharmaceutical compositions. The pharmaceutical composi Apr. 2, 2013 (IN) ......................... 1287/MUMA2013 tions of the present invention are safe, non-toxic, exhibits enhanced physical stability compared to conventional formu Publication Classification lations containing such pharmaceutical actives and are Suit able for use as injectables for intravenous and intramuscular (51) Int. Cl. administration, as well as for use as a preformed solution/ A647/ (2006.01) liquid for filling in and preparation of capsules, tablets, nasal A6 IK 45/06 (2006.01) sprays, gargles, dermal applications, gels, topicals, liquid oral A6 IK9/00 (2006.01) dosage forms and other dosage forms.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Herbals, Complementary Medicines & Nutritional Supplements (PDF)
    Herbals, Complementary Medicines Nutritional & Supplements Complementary medicines and nutritional supplements are a popular addition to “traditional” medicine. Information about these therapies can range from news reports and magazine articles to advertising that may contain false claims. This pamphlet was designed to provide veterans and their families with unbiased information. The information in this pamphlet is not intended to take the place of advice from your healthcare provider. Angela Paniagua, Pharm.D., CGP Pharmacy Program, Clement J. Zablocki VAMC Milwaukee, WI Complementary medicines and nutritional supplements are not miracle cures. Do not stop taking your prescription medicine without speaking to your health care provider. Doing so may be dangerous to your health. Warning Several complementary medications have been found to be unsafe and/or unpure. All patients should avoid: 5-HTP DHEA Shark Cartilage Bee Venom L-tryptophan What is herbal therapy? Herbs have been used in medicine for as long as people have been on earth. The use of herbal therapies has been recorded in ancient Greece, Egypt, Rome, India, Russia, and China. Many modern medicines came from Native American remedies. There are many examples of drugs used today that are from plants. They may come from the plant's leaves, roots, flowers or fruits. Digoxin is a good example of a drug that comes from a plant source. Digoxin is used to treat problems with heart rhythms or heart failure. Psyllium, the ingredient in Metamucil© used to add fiber to a patient's diet, is also a natural product. Taxol®, made from a type of tree bark, is used to treat cancer.
    [Show full text]
  • Jp Xvii the Japanese Pharmacopoeia
    JP XVII THE JAPANESE PHARMACOPOEIA SEVENTEENTH EDITION Official from April 1, 2016 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the convenience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. The Ministry of Health, Labour and Welfare Ministerial Notification No. 64 Pursuant to Paragraph 1, Article 41 of the Law on Securing Quality, Efficacy and Safety of Products including Pharmaceuticals and Medical Devices (Law No. 145, 1960), the Japanese Pharmacopoeia (Ministerial Notification No. 65, 2011), which has been established as follows*, shall be applied on April 1, 2016. However, in the case of drugs which are listed in the Pharmacopoeia (hereinafter referred to as ``previ- ous Pharmacopoeia'') [limited to those listed in the Japanese Pharmacopoeia whose standards are changed in accordance with this notification (hereinafter referred to as ``new Pharmacopoeia'')] and have been approved as of April 1, 2016 as prescribed under Paragraph 1, Article 14 of the same law [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No. 104, 1994) as of March 31, 2016 as those exempted from marketing approval pursuant to Paragraph 1, Article 14 of the Same Law (hereinafter referred to as ``drugs exempted from approval'')], the Name and Standards established in the previous Pharmacopoeia (limited to part of the Name and Standards for the drugs concerned) may be accepted to conform to the Name and Standards established in the new Pharmacopoeia before and on September 30, 2017.
    [Show full text]
  • 2016 Medicines in Development for Rare Diseases a LIST of ORPHAN DRUGS in the PIPELINE
    2016 Medicines in Development for Rare Diseases A LIST OF ORPHAN DRUGS IN THE PIPELINE Autoimmune Diseases Product Name Sponsor Official FDA Designation* Development Status Actemra® Genentech treatment of systemic sclerosis Phase III tocilizumab South San Francisco, CA www.gene.com Adempas® Bayer HealthCare Pharmaceuticals treatment of systemic sclerosis Phase II riociguat Whippany, NJ www.pharma.bayer.com ARA 290 Araim Pharmaceuticals treatment of neuropathic pain in patients Phase II Tarrytown, NY with sarcoidosis www.ariampharma.com ARG201 arGentis Pharmaceuticals treatment of diffuse systemic sclerosis Phase II (type 1 native bovine skin Collierville, TN www.argentisrx.com collagen) BYM338 Novartis Pharmaceuticals treatment of inclusion body myositis Phase III (bimagrumab) East Hanover, NJ www.novartis.com CCX168 ChemoCentryx treatment of anti-neutrophil cytoplasmic Phase II (5a receptor antagonist) Mountain View, CA auto-antibodies associated vasculitides www.chemocentryx.com (granulomatosis with polyangitis or Wegener's granulomatosis), microscopic polyangitis, and Churg-Strauss syndrome * This designation is issued by the FDA's Office of Orphan Products Development while the drug is still in development. The designation makes the sponsor of the drug eligible for entitlements under the Orphan Drug Act of 1983. The entitlements include seven years of marketing exclusivity following FDA approval of the drug for the designated use. Medicines in Development: Rare Diseases | 2016 1 Autoimmune Diseases Product Name Sponsor Official FDA
    [Show full text]
  • PDF-Document
    Figure S1. Chromatogram of 66 compounds at 0.05 mg L-1 Figure S2. Example of chromatogram and mass spectra in sample (S-162, sennosides) Table S1. Selection criteria of 66 target compounds based on Korean legislation. Not Not Prohibited Prohibited Compounds Pharmaceutical authorized Compounds Pharmaceutical authorized compounds1) compounds1) ingredients2) ingredients2) 2,4-Dinitrophenol (2,4-DNP) Ο Liothyronine Ο Ο 7-keto-dehydroepiandrosterone (7-keto-DHEA) Ο Lorcaserine Ο Amphetamine Ο Lovastatin Ο Asarone Ο Magnoflorine Ο Atropine Ο Melatonin Ο Berberine Ο Metformin Ο beta-methylphenethylamine (BMPEA) Ο Methylclothiazide Ο Bisacodyl Ο Mexamine (5-methoxytryptamine) Ο Buformin Ο N-nitrosofenfluramine Ο Ο Cascaroside A Ο Ο Noopept Ο Cascaroside B Ο Ο Oxilofrine Ο Cascaroside C Ο Ο Oxindole Ο Cascaroside D Ο Ο Oxitriptan (5-hydroxytryptohpane) Ο Chlorothiazide Ο Phendimetrazine Ο Cimifugin Ο Phenformin Ο Dehydroepiandrosterone (DHEA) Ο Phenolphtalein Ο Ο Echinacoside Ο Phentermine Ο Ephedrine Ο Ο Picamilon Ο Fenfluramine Ο Ο Rauwolscine (α-yohimbine) Ο Ο Fluoxetine Ο Ο Reserpine Ο Glibenclamide Ο Ο Salbutamol Ο Gliclazide Ο Ο Salicin Ο Glimepiride Ο Ο Salicylic acid Ο Glipizide Ο Ο Scopolamine Ο Hesperidin Ο Sennoside A Ο Ο Hydrastine Ο Sennoside B Ο Ο Hydrochlorothiazide Ο Serotonin (5-hydroxytryptamine) Ο Hydroflumethiazide Ο Synephrine Ο Icariin Ο Ο Tolbutamide Ο Icaritin Ο Trichloromethiazide Ο Kavain Ο Trigonelline Ο Levodopa Ο Vinpocetine Ο Levothyroxine Ο Ο Yohimbine (β-yohimbine) Ο Ο 1) Prohibited by Food and Sanitation Act in Ministry of Food and Drug Safety in Korea 2) Not authorized food ingredients by Food Code in Korea Table S2.
    [Show full text]