The Botanic Garden
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selecting Plants for Pollinators Selecting Plants for Pollinators
Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Sierran Steppe Mixed Forest Coniferous Forest Alpine Meadow Province Including Parts of California and NAPPC and Oregon Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Sierran Steppe – Mixed Forest 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Far ms 13 Public Lands 14 Home Landscapes 15 Bloom Periods 16 Plants That Attract Pollinators 18 Habitat Hints 20 Check list 22 This is one of several guides for different regions in the United Resources and Feedback 23 States. We welcome your feedback to assist us in making the future guides useful. Please contact us at [email protected] Cover: Trinity Alps, California mountains and meadow courtesy Marguerite Meyer 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Ecological Region of the Sierran Steppe Mixed Forest Coniferous Forest Alpine Meadow Province Including Parts of California and Oregon a nappc and Pollinator Partnership™ Publication This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC–www.nappc.org). Sierran Steppe – Mixed Forest – Coniferous Forest – Alpine Meadow Province 3 Why support pollinators? In theIr 1996 book, the Forgotten PollInators, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “ Farming feeds of 90% of flowering plants and one third of human food crops. -
Botanischer Garten Der Universität Tübingen
Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22 -
Colonial Garden Plants
COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds. -
Seedimages Species Database List
Seedimages.com Scientific List (possibly A. cylindrica) Agropyron trachycaulum Ambrosia artemisifolia (R) not Abelmoschus esculentus Agrostemma githago a synonym of A. trifida Abies concolor Agrostis alba Ambrosia confertiflora Abronia villosa Agrostis canina Ambrosia dumosa Abronia villosum Agrostis capillaris Ambrosia grayi Abutilon theophrasti Agrostis exarata Ambrosia psilostachya Acacia mearnsii Agrostis gigantea Ambrosia tomentosa Acaena anserinifolia Agrostis palustris Ambrosia trifida (L) Acaena novae-zelandiae Agrostis stolonifera Ammi majus Acaena sanguisorbae Agrostis tenuis Ammobium alatum Acalypha virginica Aira caryophyllea Amorpha canescens Acamptopappus sphaerocephalus Alcea ficifolia Amsinckia intermedia Acanthospermum hispidum Alcea nigra Amsinckia tessellata Acer rubrum Alcea rosea Anagallis arvensis Achillea millifolium Alchemilla mollis Anagallis monellii Achnatherum brachychaetum Alectra arvensis Anaphalis margaritacea Achnatherum hymenoides Alectra aspera Andropogon bicornis Acmella oleracea Alectra fluminensis Andropogon flexuosus Acroptilon repens Alectra melampyroides Andropogon gerardii Actaea racemosa Alhagi camelorum Andropogon gerardii var. Adenostoma fasciculatum Alhagi maurorum paucipilus Aegilops cylindrica Alhagi pseudalhagi Andropogon hallii Aegilops geniculata subsp. Allium canadense Andropogon ternarius geniculata Allium canadense (bulb) Andropogon virginicus Aegilops ovata Allium cepa Anemone canadensis Aegilops triuncialis Allium cernuum Anemone cylindrica Aeginetia indica Allium fistulosum Anemone -
Number English Name Welsh Name Latin Name Availability Llysiau'r Dryw Agrimonia Eupatoria 32 Alder Gwernen Alnus Glutinosa 409 A
Number English name Welsh name Latin name Availability Sponsor 9 Agrimony Llysiau'r Dryw Agrimonia eupatoria 32 Alder Gwernen Alnus glutinosa 409 Alder Buckthorn Breuwydd Frangula alnus 967 Alexanders Dulys Smyrnium olusatrum Kindly sponsored by Alexandra Rees 808 Allseed Gorhilig Radiola linoides 898 Almond Willow Helygen Drigwryw Salix triandra 718 Alpine Bistort Persicaria vivipara 782 Alpine Cinquefoil Potentilla crantzii 248 Alpine Enchanter's-nightshade Llysiau-Steffan y Mynydd Circaea alpina 742 Alpine Meadow-grass Poa alpina 1032 Alpine Meadow-rue Thalictrum alpinum 217 Alpine Mouse-ear Clust-y-llygoden Alpaidd Cerastium alpinum 1037 Alpine Penny-cress Codywasg y Mwynfeydd Thlaspi caerulescens 911 Alpine Saw-wort Saussurea alpina Not Yet Available 915 Alpine Saxifrage Saxifraga nivalis 660 Alternate Water-milfoil Myrdd-ddail Cylchynol Myriophyllum alterniflorum 243 Alternate-leaved Golden-saxifrageEglyn Cylchddail Chrysosplenium alternifolium 711 Amphibious Bistort Canwraidd y Dŵr Persicaria amphibia 755 Angular Solomon's-seal Polygonatum odoratum 928 Annual Knawel Dinodd Flynyddol Scleranthus annuus 744 Annual Meadow-grass Gweunwellt Unflwydd Poa annua 635 Annual Mercury Bresychen-y-cŵn Flynyddol Mercurialis annua 877 Annual Pearlwort Cornwlyddyn Anaf-flodeuog Sagina apetala 1018 Annual Sea-blite Helys Unflwydd Suaeda maritima 379 Arctic Eyebright Effros yr Arctig Euphrasia arctica 218 Arctic Mouse-ear Cerastium arcticum 882 Arrowhead Saethlys Sagittaria sagittifolia 411 Ash Onnen Fraxinus excelsior 761 Aspen Aethnen Populus tremula -
Rapunzel Is Not Just a Princess in Fairy Tale
Rapunzel Is Not just a Princess in a Fairy Tale Column ideas sometimes arrive by chance, and from the strangest, offhand comments. Last week, my friend Terri said, “I want to ask you about an herb. I was reading nursery stories, and did you know that Rapunzel was named after an herb? Her mother ate so many of them while she was pregnant that she decided to name her baby daughter after the plant. The herbs were stolen from a witch’s garden, so she placed a curse on the baby.” It had been many years since I read “Rapunzel,” and I didn’t recall the reference to raiding the witch’s garden. I love researching odd stories and occurrences, and an unusual reference to the plant origin of the heroine’s name in a fairy tale piqued my interest. Terri is correct about the origin of Princess Rapunzel’s name. When the Brothers Grimm published “”Rapunzel” in 1812, rapunzel, or Campanula rapunculus, was commonly grown in herb and vegetable gardens. The plant name would have been familiar to readers of that period. Campanula rapunculus is a member of the Campanulaceae or bellflower family, of which there are 500 species. Campanula species are native to North Africa, Europe, and Western Asia. Other common names are bluebell and harebell. The Latin name “Campanula” translates as little bell and “rapunculus” is derived from the Latin word “rapa,” meaning small turnip, in reference to the parsnip or radish-like roots. An English-language common name of C. rapunculus is rampion, not to be confused with ramp or Allium tricoccum, a strongly flavored spring onion, native to the eastern United States and Canada, and the focus of spring festivals in Virginia, West Virginia, North Carolina, and Tennessee. -
Conservation Gaps in Traditional Vegetables Native to Europe and Fennoscandia
agriculture Article Conservation Gaps in Traditional Vegetables Native to Europe and Fennoscandia Kauê de Sousa 1,2 and Svein Øivind Solberg 1,* 1 Department of Agricultural Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences, 2318 Hamar, Norway; [email protected] 2 Bioversity International, 00054 Rome, Italy * Correspondence: [email protected]; Tel.: +46-7354-01516 Received: 15 July 2020; Accepted: 3 August 2020; Published: 6 August 2020 Abstract: Vegetables are rich in vitamins and other micronutrients and are important crops for healthy diets and diversification of the food system, and many traditional (also termed underutilized or indigenous) species may play a role. The current study analyzed 35 vegetables with a European region of diversity with the effort to map the conservation status in Fennoscandia and beyond. We mapped georeferenced occurrences and current genebank holdings based on global databases and conducted conservation gaps analysis based on representativeness scores in situ and ex situ. Out of the 35 target species, 19 got at a high priority score for further conservation initiatives, while another 14 species got a medium priority score. We identified a pattern where traditional vegetables are poorly represented in genebank holdings. This corresponds well to a lack of attention in the scientific community measured in number of published papers. Considering the grand challenges ahead in terms of climate change, population growth and demand for sustainability, traditional vegetables deserve greater attention. Our contribution is to provide a basis for conservation priorities among the identified vegetables species native to Fennoscandia. Keywords: crop wild relatives; ecosystem services; ensemble models; genetic diversity; plant genetic resources; species distribution models 1. -
Seedling Identification Guide for Pollinator Forbs of California's
Natural Resources Conservation Service Plant Materials Technical Note No. CA-89 California December 2020 Seedling Identification Guide for Pollinator Forbs of California’s Central Valley Photo credit: Jessa Kay Cruz, Xerces Society Helping People Help the Land Acknowledgements Written and compiled August 2019. California Plant Materials Technical Note No. 89 Issued December 2020, prepared by: Kathryn Prince, Xerces Society Partner Biologist, Madera CA Margaret Smither-Kopperl, Plant Materials Center Manager, Lockeford CA Jessa Kay Cruz, Xerces Society California Senior Pollinator Conservation Specialist, Sacramento CA This publication was reviewed by individuals from the NRCS technical disciplines. Special thanks to Matthew Bronson, Plant Materials Center Farm Manager, Lockeford CA, who maintained many of the seedlings pictured in this guide; and to Anna Young-Matthews, NRCS, Corvallis OR, who authored a previous version of this guide. Citation: U.S. Department of Agriculture, Natural Resources Conservation Service. 2019. Seedling Identification Guide for Pollinator Forbs of California’s Central Valley. Prince, K.J., Smither-Kopperl, M., & Kay Cruz, J. CAPMC Plant Materials Technical Note, Lockeford, CA. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). -
Specialized Bees Fail to Develop on Non- Host Pollen: Do Plants Chemically Protect Their Pollen?
1 SPECIALIZED BEES FAIL TO DEVELOP ON NON- HOST POLLEN: DO PLANTS CHEMICALLY PROTECT THEIR POLLEN? 1 CHRISTOPHE J. PRAZ,ANDREAS MU¨LLER, AND SILVIA DORN ETH Zurich, Institute of Plant Sciences, Applied Entomology, Schmelzbergstrasse 9/LFO, 8092 Zurich, Switzerland Abstract Bees require large amounts of pollen for their own reproduction. While several morphological flower traits are known to have evolved to protect plants against excessive pollen harvesting by bees, little is known on how selection to minimize pollen loss acts on the chemical composition of pollen. In this study, we traced the larval development of four solitary bee species, each specialized on a different pollen source, when reared on non-host pollen by transferring unhatched eggs of one species onto the pollen provisions of another species. Pollen diets of Asteraceae and Ranunculus (Ranunculaceae) proved to be inadequate for all bee species tested except those specialized on these plants. Further, pollen of Sinapis (Brassicaceae) and Echium (Boraginaceae) failed to support larval development in one bee species specialized on Campanula (Campanulaceae). Our results strongly suggest that pollen of these four taxonomic groups possess protective properties that hamper digestion and thus challenge the general view of pollen as an easy-to-use protein source for flower visitors. Keywords Apoidea; Asteraceae; bee–flower relationships; Echium; Megachilidae; oligolectic bees; pollenkit; pollination; Ranunculus; secondary compounds; Sinapis; toxic pollen. INTRODUCTION (i.e., those with stamens coming to maturity before the The great majority of flowering plants rely on insects pistil) for example, female bees restrict their foraging to or other animals for pollination. This interaction has flowers in the male phase, thereby scarcely contributing shaped the evolution of both the angiosperms and their to pollination (Mu¨ller 1996a). -
Recommended Plants for Pollinators & Beneficial Insects
Recommended Plants for California Central Pollinators & Beneficial Insects Coast Region Central Coast wildflower pollinator planting blooming in late summerL; sweat bee on California poppyR. (Photographs by the Xerces Society / Jessa Kay CruzL & Matthew ShepherdR.) Plant Selection The plants on this list are recommended for use in pollinator habitat restoration and enhancement projects in agricultural landscapes. These species have been selected because they are attractive to a diversity of different bee species, and provide pollen and nectar resources throughout the season, provided that a minimum of three different plant species from each blooming period (early, mid, and late season) are selected. A majority of plants recommended are native, drought tolerant, easy to establish, and don’t serve as alternate hosts to crop pests or diseases. Native Species for Pollinators and Beneficial Insects SCIENTIFIC NAME COMMON NAME BLOOM LIFE FORM SUN WATER SOIL TEXTURE ADDITIONAL DETAILS Achillea millefolium Common yarrow MID P F = L ANY *&\-»[ Agastache urticifolia Nettleleaf giant hyssop MID P F = M MEDIUM–COARSE *b[ Arctostaphylos densiflora ‘McMinn’ McMinn manzanita EARLY P W = L MEDIUM *&\b Arctostaphylos glauca Bigberry manzanita EARLY P W > L ANY *&\b Asclepias fascicularis Narrowleaf milkweed MID P F = M ANY *&\b[ Baccharis pilularis Coyotebrush LATE P W = L ANY *&\[ Baccharis pilularis 'Pigeon Point' Dwarf coyotebrush LATE P W = L ANY *&\[ Berberis aquifolium Oregon grape EARLY P W = L ANY *&»[ Ceanothus ‘Julia Phelps’ California lilac 'Julia Phelps’ EARLY P W < L MEDIUM-COARSE *\b Clarkia amoena Farewell-to-spring EARLY–MID A F = M FINE–MEDIUM &[ Collinsia heterophylla Chinese houses EARLY A F = M ANY & Diplacus aurantiacus ssp. -
Reconstructing the History of Campanulaceae.Pdf
Molecular Phylogenetics and Evolution 52 (2009) 575–587 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Reconstructing the history of Campanulaceae with a Bayesian approach to molecular dating and dispersal–vicariance analyses Cristina Roquet a,b,*, Isabel Sanmartín c, Núria Garcia-Jacas a, Llorenç Sáez b, Alfonso Susanna a, Niklas Wikström d, Juan José Aldasoro c a Institut Botànic de Barcelona (CSIC-ICUB), Passeig del Migdia s. n., Parc de Montjuïc, E-08038 Barcelona, Catalonia, Spain b Unitat de Botànica, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain c Real Jardín Botánico de Madrid (CSIC), Plaza de Murillo, 2, E-28014 Madrid, Spain d Evolutionsbiologiskt centrum, University of Uppsala, Norbyvägen 18D, SE-752 36 Uppsala, Sweden article info abstract Article history: We reconstruct here the spatial and temporal evolution of the Campanula alliance in order to better Received 19 June 2008 understand its evolutionary history. To increase phylogenetic resolution among major groups (Wahlen- Revised 6 May 2009 bergieae–Campanuleae), new sequences from the rbcL region were added to the trnL-F dataset obtained Accepted 15 May 2009 in a previous study. These phylogenies were used to infer ancestral areas and divergence times in Cam- Available online 21 May 2009 panula and related genera using a Bayesian approach to molecular dating and dispersal–vicariance anal- yses that takes into account phylogenetic uncertainty. The new phylogenetic analysis confirms Keywords: Platycodoneae as the sister group of Wahlenbergieae–Campanuleae, the two last ones inter-graded into Bayes-DIVA, Molecular dating a well-supported clade. -
Phoenix AMA LWUPL
Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.