Eriphiidae 1103
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Pachygrapsus Transversus
Population biology of two sympatric crabs: Pachygrapsus transversus (Gibbes, 1850) (Brachyura, Grapsidae) and Eriphia gonagra (Fabricius, 1781) (Brachyura, Eriphidae) in reefs of Boa Viagem beach, Recife, Brazil MARINA DE SÁ LEITÃO CÂMARA DE ARAÚJO¹*, DAVID DOS SANTOS AZEVEDO², JULIANE VANESSA CARNEIRO DE LIMA SILVA3, CYNTHIA LETYCIA FERREIRA PEREIRA1 & DANIELA DA SILVA CASTIGLIONI4,5 1. Universidade de Pernambuco (UPE), Coleção Didática de Zoologia (CDZ/UPE), Faculdade de Ciências, Educação e Tecnologia (FACETEG), Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105, São José, CEP 55290-000, Garanhuns, PE. 2. Instituto Federal de Educação Ciência e Tecnologia de Pernambuco (IFPE), Av. Prof. Luiz Freire, 500, Cidade Universitária, CEP 55740-540, Recife, PE. 3. Universidade Federal de Pernambuco (UFPE), Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Departamento de Zoologia, Av. Professor Moraes Rego, s-n, Cidade Universitária, CEP 50670-901, Recife, PE. 4. Universidade Federal de Santa Maria (UFSM), Departamento de Zootecnia e Ciências Biológicas, Campus de Palmeira das Missões, Avenida Independência, 3751, Bairro Vista Alegre, CEP 983000-000, Palmeira das Missões, RS. 5. Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Prédio 17, sala 1140-D, Cidade Universitária, Camobi, km 9, Santa Maria, RS. *Corresponding author: [email protected] Abstract. This study characterizes the population biology of two crabs: Pachygrapsus transversus and Eriphia gonagra from reefs at Boa Viagem Beach, Pernambuco. Carapace width (CW) was measured and all animals were sexed. A total of 1.174 specimens of P. transversus and 558 specimens of E. gonagra were sampled. -
Assessment of Interaction Between Giant Crab Trap and Benthic Trawl Fisheries
Assessment of interaction between giant crab trap and benthic trawl fisheries Rafael León, Caleb Gardner, Klaas Hartmann October 2017 This report was produced by the Institute for Marine and Antarctic Studies (IMAS) using data provided by the Department of Primary Industries, Parks, Water and the Environment (DPIPWE) and the Australian Fisheries Management Authority. The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstance. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the Institute for Marine and Antarctic Studies (IMAS) or the University of Tasmania (UTas). IMAS Fisheries and Aquaculture Private Bag 49 Hobart TAS 7001 Australia Email: [email protected] Ph: 0409 427 366 Fax: 03 6227 8035 © Institute for Marine and Antarctic Studies, University of Tasmania 2017 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Institute for Marine and Antarctic Studies. Contents Acknowledgments ................................................................................................................................. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult). -
A New Classification of the Xanthoidea Sensu Lato
Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated -
Fishery Bulletin/U S Dept of Commerce National Oceanic
LARVAL DEVELOPMENT OF THE CUBAN STONE CRAB, MENlPPE NODlFRONS (BRACHYURA, XANTHIDAE), UNDER LABORATORY CONDITIONS WITH NOTES ON THE STATUS OF THE FAMILY MENIPPIDAE1 LumInA E. SCO,I'02 ABSTRACT The complete larval development of the Cuban stone crab, Menippc nodifrons, is described and illustrated. Larvae reared in the laboratory passed through a prezoeal, five and uncommonly six zoeal, and one megalopal stage. At 30" C the megalopal stage was attained in 16-17 clays, at 20" C, 28-37 days. The six zoeal stages of M. nodifrons are compared with those of its sympatric congener M. mcrc<'!laria and with the first zoeal stage of the Indo-Pacific species M. rumphii. Larvae ofthe genus Menippe may be distinguished from other xanthid larvae by a combination of morphological features, including lilltennal development (exopodite at least three-fourths the length ofprotopoditel, lack of setae on the basal segment of the second maxillipL'<!al endopodite, and number oflarval stages (Menippe, 5 or 6; most other xanthids, 4). Using Lebour's criteria (emphasizing antenna! development and number of zoeal stages) to determine the primitive or advancL'<! status of decapod larvae, the genus Menippe is more closely related to the phylogentically primitive family Cancriclae than to most of the Xanthidae. The possible reestablishment of the family Menippidae is discussed in view of new larval evidence. The Cuban stone crab, MCllippe llodij'rolls tions of West Africa (Capart 1951; Monod 1956), a Stimpson 1859, is a medium-sized xanthid crab survey of stomatopod and decapod crustaceans of closely allied to the common commercial stone Portuguese Guiana (Vilela ]951), and an ecologi crab, MCllippc I/lcrcenaria (Say 18] 8). -
17 the Crabs Belonging to the Grapsoidea Include a Lot Of
17 SUPERFAMILY GRAPSOIDEA The crabs belonging to the Grapsoidea include a lot of ubiquitous species collected in the mangrove and/or along the coastline. As a result, most of the species listed here under the ‘Coastal Rock-rubble’ biotope of table 2b could be reasonably listed also with marine species. This is particularly true for the Grapsidae: Grapsus, Pachygrapsus, Pseudograpsus, and Thalassograpsus. FAMILY GECARCINIDAE Cardisoma carnifex (Herbst, 1796). Figure 12. – Cardisoma carnifex - Guinot, 1967: 289 (Checklist of WIO species, with mention of Grande Comore and Mayotte). - Bouchard, 2009: 6, 8, Mayotte, Malamani mangrove, 16 April 2008, St. 1, 12°55.337 S, 44°09.263 E, upper mangrove in shaded area, burrow, about 1.5 m depth, 1 male 61×74 mm (MNHN B32409). - KUW fieldwork November 2009, St. 6, Petite Terre, Badamiers spillway, upper littoral, 1 female 53×64 mm (MNHN B32410), 1 male 65×75.5 mm (MNHN B32411); St. 29, Ngouja hotel, Mboianatsa beach, in situ photographs only. Distribution. – Widespread in the IWP. Red Sea, Somalia, Kenya, Tanzania, Mozambique, South Africa, Europa, Madagascar, Comoros, Seychelles, Réunion, Mauritius, India, Taiwan, Japan, Australia, New Caledonia, Fiji, Wallis & Futuna, French Polynesia. Comment. – Gecarcinid land crabs are of large size and eaten in some places (West Indies, Wallis & Futuna, and French Polynesia). In Mayotte, however, they are not much prized for food and are not eaten. Figure 12. Cardisoma carnifex. Mayotte, KUW 2009 fieldwork: A) aspect of station 29, upper littoral Ngouja hotel, Mboianatsa beach; B) same, detail of a crab at the entrance of its burrow; C) St. 6, 1 female 53×64 mm (MNHN B32410); D) probably the same specimen, in situ at St. -
Download Download
PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Varying colour pattern, yet genetically similar: Pebble Crab Seulocia vittata (Stimpson, 1858) (Brachyura: Leucosiidae) from the southeastern coast of India Sanjeevi Prakash & Amit Kumar 26 April 2020 | Vol. 12 | No. 5 | Pages: 15612–15618 DOI: 10.11609/jot.5801.12.5.15612-15618 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. -
T)Oti/Tc < /\F^ J^Dod
T)oti/tc < /\f^ J^Dod y BOUNTIANA, A NEW GENUS FOR ERIPHIA NORFOLCENSIS GRANT & MCCULLOCH, 1907 (CRUSTACEA: BRACHYURA: ERIPHIIDAE) PETER J.F. DAVIE AND PETER K.L. NG Davie, P.J.F & Ng, P.K.L. 2000 06 30: Bountiana, a new genus for Eriphia norfolcemis Grant & McCulloch, 1907 (Crustacea: Brachyura: Eriphiidae/ Memoirs of the Queensland Museum 45(2): 267-272. Brisbane. ISSN 0079-8835. Eriphia norfolcensis is separated from Eriphia sensu stricto and placed into a new genus Bountiana. The two genera differ in many features including carapace shape, eye size and shape; differentiation of efferent branchial openings; length of second antennular segment; length and disposition of basal antennal segment; conformation of gonopod 2; and distinctness of suture between male thoracic sternites 2 and 3. A lectotype is designated forf'. norfolcensis Grant & McCulloch, 1907. ^Brachyura, Eriphiidae, Eriphia, Norfolk Island, Lord Howe Island, Australia, new genus. P.J.F Davie, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; P.K.L. Ng, Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore; 21 March 2000. Eriphia Latreille, 1817 (type species Cancer ETYMOLOGY. Named after H.M.S. Bounty, in spinifrons Herbst, 1785, a junior synonym of remembrance of the group of mutineers who lived Cancer verrucosus Forskal, 1775) (Eriphiidae undiscovered in the South Seas for so long. The ancestors sensu Ng, 1998) currently contains seven of the mutineers were, many years later, moved from Pitcaim Island to Norfolk Island where their descendents species, viz. E. verrucosa (Forskal, 1775), E. live to this day. -
Some Central Pacific Crustaceans by CHARLES HOWARD EDMONDSON Bernice P
OCCASIONAL PAPERS OF BERNICE P. BISHOP MUSEUM HONOLULU, HAWAII I Volume XX August 29, 1951 NumJ>er 13 Some Central Pacific Crustaceans By CHARLES HOWARD EDMONDSON BERNIce P. BtSHOJ' MOSEtrM INTRODUCTION The following report on crustaceans selected from materia1lwhich has accumulated in Bishop Museum for several years inc1uder (1), new species, (2) known species as new Hawaiian records, an,(i (3) known species rarely recorded in the central Pacific. Recently, valuable collections have been received as a result of the current dredging operations of the M alliin, a boat of the Fi hand Game Division, Territorial Board of Agriculture and Forestry. These collections clearly reveal the presence of a crustacean fauna a ut the Hawaiian Islands. at depths of about 10 fathoms and beyond, which is not seen on the shallow reefs. Many of the unique species taken nearly 50 years ago by the Albatross of the United States Fis Com~ mission have again been brought to view. Other rare crustaceans recorded in the report were receive1 from the Honolulu Aquarium and came from fish traps operated b~ com mercial fishermen off the coast of Oahu at depths ranging aro~nd 16 fathoms. These specimens show that fauna at these depths har close affinities with that of the western Pacific and the Indian Ocej. It is well known that many organisms, both land and marine ~orrns, have been introduced into the Hawaiian area within recent I.years, chiefly as a result of war activities. Ocean-going craft returning to Hawaii from forward areas in the Pacific transport on theil' hulls marine organisms not previously recognized among local shore fauna, and some of these inunigrants become established in the new e9viron ment.