Mammal Species Native to the USA and Canada for Which the MIL Has No Image (170) 31 July 2021

Total Page:16

File Type:pdf, Size:1020Kb

Mammal Species Native to the USA and Canada for Which the MIL Has No Image (170) 31 July 2021 Mammal species native to the USA and Canada for which the MIL has no image (170) 31 July 2021 ARTIODACTYLA (includes CETACEA) (25) BALAENIDAE - bowheads and right whales 1. Eubalaena japonica - Northern Pacific Right Whale 2. Eubalaena glacialis – North Atlantic Right Whale BALAENOPTERIDAE - rorqual whales Balaenoptera ricei - Rice’s Whale DELPHINIDAE - ocean dolphins 1. Feresa attenuata - Pygmy Killer Whale 2. Globicephala melas - Long-finned Pilot Whale 3. Lagenodelphis hosei - Fraser’s Dolphin 4. Leucopleurus acutus - Atlantic White-sided Dolphin 5. Stenella attenuata - Pantropical Spotted Dolphin 6. Stenella clymene - Clymene Dolphin 7. Stenella longirostris - Spinner Dolphin KOGIIDAE - pygmy sperm whales 1. Kogia breviceps - Pygmy Sperm Whale 2. Kogia sima - Dwarf Sperm Whale ZIPHIIDAE - beaked whales 1. Berardius bairdii - Baird’s Beaked Whale 2. Berardius minimus - Least Beaked Whale 3. Hyperoodon ampullatus - Northen Bottlenose Whale 4. Indopacetus pacificus - Tropical Beaked Whale 5. Mesoplodon bidens - Sowerby’s Beaked Whale 6. Mesoplodon carlhubbsi – Hubbs’s Beaked Whale 7. Mesoplodon densirostris - Blainville’s Beaked Whale 8. Mesoplodon europaeus - Gervais’s Beaked Whale 9. Mesoplodon ginkgodens - Ginkgo-toothed Beaked Whale 10. Mesoplodon mirus - True’s Beaked Whale 11. Mesoplodon perrini - Perrin’s Beaked Whale 12. Mesoplodon stejnegeri - Stejneger’s Beaked Whale 13. Ziphius cavirostris - Cuvier’s Beaked Whale CARNIVORA (8) CANIDAE - dogs Canis lycaon - Eastern Wolf MEPHITIDAE - skunks 1. Conepatus leuconotus - American Hog-nosed Skunk 2. Spilogale gracilis - Western Spotted Skunk MUSTELIDAE - weasels and relatives Martes americana - American Marten OTARIIDAE - eared seals Arctocephalus townsendi - Guadalupe Fur Seal PHOCIDAE - earless seals 1. Cystophora cristata - Hooded Seal 2. Histriophoca fasciata - Ribbon Seal 3. Phoca largha - Spotted Seal CHIROPTERA (20) MOLOSSIDAE - free-tailed bats 1. Eumops floridanus - Florida Bonneted Bat 2. Eumops underwoodi - Underwood’s Bonneted Bat 3. Nyctinomops femorosaccus - Pocketed Free-tailed Bat PHYLLOSTOMIDAE - Neotropical leaf-nosed bats 1. Choeronycteris mexicana - Mexican Long-tongued Bat 2. Leptonycteris nivalis - Mexican Long-nosed Bat 3. Macrotus californicus - Californian Leaf-nosed Bat VESPERTILIONIDAE - evening bats 1. Lasiurus seminolus - Seminole Bat 2. Lasiurus semotus - Hawaiian Hoary Bat 3. Lasiurus xanthinus - Western Yellow Bat 4. Myotis auriculus - Southwestern Myotis 5. Myotis austroriparius - Southeastern Myotis 6. Myotis californicus - Californian Myotis 7. Myotis ciliolabrum - Western Small-footed Myotis 8. Myotis keenii - Keen’s Myotis 9. Myotis occultus - Arizona Myotis 10. Myotis thysanodes - Fringed Myotis 11. Myotis velifer - Cave Myotis 12. Myotis volans - Long-legged Myotis 13. Myotis yumanensis - Yuma Myotis 14. Parastrellus hesperus - Canyon Bat EULIPOTYPHLA (32) SORICIDAE - shrews 1. Blarina hylophaga - Elliot’s Short-tailed Shrew 2. Blarina peninsulae - Everglades Short-tailed Shrew 3. Blarina shermani - Sherman’s Short-tailed Shrew 4. Notiosorex cockrumi - Cockrum’s Desert Shrew 5. Notiosorex tataticuli - Ticul’s Desert Shrew 6. Sorex albibarbis - Eastern Water Shrew 7. Sorex arizonae - Arizona Shrew 8. Sorex bendirii - Marsh Shrew 9. Sorex dispar - Rock Shrew 10. Sorex eximius - Western Pygmy Shrew 11. Sorex fontinalis - Maryland Shrew 12. Sorex haydeni - Prairie Shrew 13. Sorex jacksoni - St. Lawrence Island Shrew 14. Sorex longirostris - Southeastern Shrew 15. Sorex lyelli - Mt. Lyell Shrew 16. Sorex maritimensis - Maritime Shrew 17. Sorex merriami - Merriam’s Shrew 18. Sorex minutissimus - Eurasian Least Shrew 19. Sorex monticola -Southern Montane Shrew 20. Sorex nanus - Dwarf Shrew 21. Sorex obscurus - Northern Montane Shrew 22. Sorex ornatus - Ornate Shrew 23. Sorex pacificus - Pacific Shrew 24. Sorex palustris - American Water Shrew 25. Sorex preblei - Preble’s Shrew 26. Sorex pribilofensis - Pribilof Island Shrew 27. Sorex rohweri - Olympic Shrew 28. Sorex sonomae - Fog Shrew 29. Sorex tundrensis - Tundra Shrew 30. Sorex ugyunak - Barren Ground Shrew TALPIDAE - moles 1. Scapanus latimanus - Broad-footed Mole 2. Scapanus townsendii - Townsend’s Mole LAGOMORPHA (3) LEPORIDAE - rabbits and hares 1. Lepus othus - Alaskan Hare 2. Sylvilagus holzneri - Robust Cottontail RODENTIA (84) CRICETIDAE - hamsters, New World rats and mice, voles 1. Arborimus albipes - White-footed Vole 2. Arborimus longicaudus - Red Tree Vole 3. Arborimus pomo - Sonoma Tree Vole 4. Clethrionomys californicus - Western Red-backed Vole 5. Dicrostonyx hudsonius - Ungava Collared Lemming 6. Dicrostonyx nelsoni - Nelson’s Collared Lemming 7. Dicrostonyx nunatakensis - Ogilvie Mts Collared Lemming 8. Dicrostonyx richardsoni - Richardson’s Collared Lemming 9. Dicrostonyx unalascensis - Unalaska Collared Lemming 10. Lemmus trimucronatus - Nearctic Brown Lemming 11. Microtus breweri - Beach Vole 12. Microtus californicus - California Vole 13. Microtus canicaudus - Gray-tailed Vole 14. Microtus dukecambelli - Florida Salt Marsh Vole 15. Microtus miurus - Singing Vole 16. Microtus montanus - Montane Vole 17. Microtus pinetorum - Woodland Vole 18. Microtus townsendii - Townsend’s Vole 19. Microtus xanthognathus - Taiga Vole 20. Neofiber alleni - Round-tailed Muskrat 21. Neotoma bryanti - Bryant’s Woodrat 22. Neotoma devia - Arizona Woodrat 23. Neotoma fuscipes - Dusky-footed Woodrat 24. Neotoma leucodon - White-toothed Woodrat 25. Neotoma stephensi - Stephen’s Woodrat 26. Oryzomys palustris - Common Marsh Rice Rat 27. Peromyscus attwateri - Texas Deermouse 28. Peromyscus crinitus - Canyon Deermouse 29. Peromyscus fraterculus - Northern Baja Deermouse 30. Peromyscus gambelii - Gambel’s Deermouse 31. Peromyscus gratus - Saxicoline Deermouse 32. Peromyscus labecula - Southern Deermouse 33. Peromyscus laceianus - Northern White-ankled Deermouse 34. Peromyscus merriami - Merriam’s Deermouse 35. Peromyscus polionotus - Oldfield Deermouse 36. Phenacomys intermedius - Western Heather Vole 37. Phenacomys ungava - Eastern Heather Vole 38. Reithrodontomys montanus - Plains Harvest Mouse 39. Sigmodon arizonae - Arizona Cotton Rat 40. Synaptomys borealis - Northern Bog Lemming GEOMYIDAE - pocket gophers 1. Geomys arenarius - Desert Pocket Gopher 2. Geomys knoxjonesi - Knox Jones’s Pocket Gopher 3. Geomys personatus - Texas Pocket Gopher 4. Geomys texensis - Llano Pocket Gopher 5. Thomomys bulbivorus - Camas Pocket Gopher 6. Thomomys idahoensis - Idaho Pocket Gopher 7. Thomomys monticola - Mountain Pocket Gopher 8. Thomomys townsendii - Townsend’s Pocket Gopher 9. Thomomys umbrinus - Southern Pocket Gopher HETEROMYIDAE - kangaroo rats and relatives 1. Chaetodipus eremicus - Chihuahuan Desert Pocket Mouse 2. Chaetodipus hispidus - Hispid Pocket Mouse 3. Chaetodipus rudinoris - Baja California Pocket Mouse 4. Dipodomys californicus - California Kangaroo Rat 5. Dipodomys elator - Texas Kangaroo Rat 6. Dipodomys stephensi - Stephens’s Kangaroo Rat 7. Heteromys irroratus - Mexican Spiny Pocket Mouse 8. Perognathus alticola - White-eared Pocket Mouse 9. Perognathus fasciatus - Olive-backed Pocket Mouse 10. Perognathus longimembris - Little Pocket Mouse 11. Perognathus parvus - Columbia Plateau Pocket Mouse SCIURIDAE - squirrels 1. Cynomys leucurus - White-tailed Prairie Dog 2. Cynomys parvidens - Utah Prairie Dog 3. Glaucomys oregonensis - Humboldt’s Flying Squirrel 4. Ictidomys parvidens - Rio Grande Ground Squirrel 5. Neotamias alpinus - Alpine Chipmunk 6. Neotamias obscurus - California Chipmunk 7. Neotamias palmeri - Palmer’s Chipmunk 8. Neotamias panamintinus - Panamint Chipmunk 9. Neotamias quadrimaculatus - Long-eared Chipmunk 10. Neotamias ruficaudus - Red-tailed Chipmunk 11. Neotamias siskiyou - Siskiyou Chipmunk 12. Neotamias umbrinus - Uinta Chipmunk 13. Urocitellus canus - Merriam’s Ground Squirrel 14. Urocitellus mollis - Paiute Ground Squirrel 15. Urocitellus townsendii - Townsend’s Ground Squirrel 16. Xerospermophilus spilosoma - Spotted Ground Squirrel ZAPODIDAE - jumping mice and relatives 1. Napeozapus abietorum - Western Woodland Jumping Mouse 2. Zapus hudsonius - Northern Meadow Jumping Mouse 3. Zapus luteus - Southern Meadow Jumping Mouse 4. Zapus montanus - Central Pacific Jumping Mouse 5. Zapus oregonus - Oregon Jumping Mouse 6. Zapus saltator - Northwestern Jumping Mouse 7. Zapus trinotatus - Northern Pacific Jumping Mouse Mammalian genera native to the USA and Canada for which the MIL has no image 1. Arborimus 8. Lagenodelphis 2. Berardius 9. Leucopleurus 3. Choeronycteris 10. Macrotus 4. Cystophora 11. Neofiber 5. Feresa 12. Parastrellus 6. Histriophoca 13. Phenacomys 7. Hyperoodon 14. Ziphius.
Recommended publications
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • U.S. EPA, Pesticide Product Label, 0.5% STRYCHNINE MILO for HAND
    Jl.l!l€' 23, 1997 Dr. Alan V. Tasker Acting Leader, rata Support Teaill Tec.'mical and Sciemtific Services USDA/AHflS/BBEP Unit ISO ) 4700 River Foad Rivcreale, ND 20737 Dear Dr. Tasker, Subject: 0.5% Str.fclmine Mlo rex Ha.'ld Baiting fucket C,ophers EPA Registratirn No. 56228-19 Your Slil;;nissions of Septemb€r 23, 19%, and June 2, 1997 ~Je nave reviewed ,YOUr sl.ibmi~sicn of Sept€T."'~r 19, 1996:. ThE' cnongp--s in tl"le inert ingredients a'ld t..'1e revised basic and alte..."7late Confidential StatC1"~nts of Forl'1Ula (CSFs) ;;.r8 acceptable. He 1=1<: fort-l;;.rd to receiving the product chemistry data on the nc-w formulation. Your letter of SepteJl'J::>er 23, 19%, imicates thClt some of these studies ~Jere underway at that tire. The proposed revis20 label stibIcJ tted 00 June 2, 1997, is J:-.asically ) acceptC!ble, but the change identified l.-elow must be made. 1. In the "NOI'E TO PHYSICIAN", change "CI\UrION," to "NOrrcp.:" so as not to conflict with the label's required signal Nord "I'i"lNGFR". 8u.1:'mit one r:::q:y of the fin.-J.l printed label before releasing this prcrluct for shipment. :;;~x¥~~ COP~ E William H. JacObs BEST AVA'LAB\.. i\cting Product 1<1a.'l8.ger 14 Insecticide-Rodenticide Branch Reo.istration Division (7505C) :::::, ~.. ..w·-1······ _.. ._-j.. ......w. ··1· "~'~"·Tm--I··· ·1· ............ ·····1· _............. DATE ~ •......••.•....... .........•..••.• ....... ~ ..•....... ..........................................................................................- ....... EPA Form 1320-102-70) OFFICIAL FILE COpy r.. PRECAUTIONARY STATEMENTS 0.5% STRYCHNINE r~1.0 HAZARDS TO HUMANS AND FOR HAND BAITING STORAGE AND DISPOSAL I -, DOMESTIC ANIMALS Do not contaminate water, food, or POCKET GOPHERS feed by storage or disposal.
    [Show full text]
  • Legged Buzzards Cope with Changing Small Rodent Communities?
    Received: 20 February 2019 | Revised: 26 July 2019 | Accepted: 2 August 2019 DOI: 10.1111/gcb.14790 PRIMARY RESEARCH ARTICLE Flexibility in a changing arctic food web: Can rough‐legged buzzards cope with changing small rodent communities? Ivan A. Fufachev1 | Dorothee Ehrich2 | Natalia A. Sokolova1,3 | Vasiliy A. Sokolov4 | Aleksandr A. Sokolov1,3 1Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch of Russian Abstract Academy of Sciences, Labytnangi, Russia Indirect effects of climate change are often mediated by trophic interactions and 2 Department of Arctic and Marine consequences for individual species depend on how they are tied into the local food Biology, UiT – The Arctic University of Norway, Tromsø, Norway web. Here we show how the response of demographic rates of an arctic bird of prey 3Arctic Research Center of Yamal‐Nenets to fluctuations in small rodent abundance changed when small rodent community Autonomous District, Salekhard, Russia composition and dynamics changed, possibly under the effect of climate warming. 4Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, We observed the breeding biology of rough‐legged buzzards (Buteo lagopus) at the Ekaterinburg, Russia Erkuta Tundra Monitoring Site in southern Yamal, low arctic Russia, for 19 years Correspondence (1999–2017). At the same time, data on small rodent abundance were collected and Dorothee Ehrich, Department of Arctic and information on buzzard diet was obtained from pellet dissection. The small rodent Marine Biology, UiT – The Arctic University of Norway, 9037 Tromsø, Norway. community experienced a shift from high‐amplitude cycles to dampened fluctua‐ Email: [email protected] tions paralleled with a change in species composition toward less lemmings and more Funding information voles.
    [Show full text]
  • Description of a New Species of Beaked Whale (Berardius) Found in the North Pacific
    www.nature.com/scientificreports OPEN Description of a new species of beaked whale (Berardius) found in the North Pacifc Received: 30 November 2018 Tadasu K. Yamada1, Shino Kitamura2,3, Syuiti Abe3, Yuko Tajima1, Ayaka Matsuda3, Accepted: 4 July 2019 James G. Mead4 & Takashi F. Matsuishi3,5 Published: xx xx xxxx Two types of Berardius are recognised by local whalers in Hokkaido, Japan. The frst is the ordinary Baird’s beaked whale, B. bairdii, whereas the other is much smaller and entirely black. Previous molecular phylogenetic analyses revealed that the black type is one recognisable taxonomic unit within the Berardius clade but is distinct from the two known Berardius species. To determine the characteristics of the black type, we summarised external morphology and skull osteometric data obtained from four individuals, which included three individuals from Hokkaido and one additional individual from the United States National Museum of Natural History collection. The whales difered from all of their congeners by having the following unique characters: a substantially smaller body size of physically mature individuals, proportionately shorter beak, and darker body colour. Thus, we conclude that the whales are a third Berardius species. Beaked whales (Family Ziphiidae, Odontoceti, Cetacea) include the second largest number of species among toothed whale families. Teir preference for deep ocean waters, elusive habits, and long dive capacity1 make beaked whales hard to see and inadequately understood. A total of 22 species are currently recognized in six genera (Berardius, Hyperoodon, Indopacetus, Mesoplodon, Tasmacetus, and Ziphius)2. Te genus Berardius has two species, Baird’s beaked whale Berardius bairdii, found in the North Pacifc and adjacent waters, and Arnoux’s beaked whale B.
    [Show full text]
  • Genetic Structure of the Beaked Whale Genus Berardius in the North Pacific
    MARINE MAMMAL SCIENCE, 33(1): 96–111 (January 2017) Published 2016. This article is a U.S. Government work and is in the public domain in the USA DOI: 10.1111/mms.12345 Genetic structure of the beaked whale genus Berardius in the North Pacific, with genetic evidence for a new species PHILLIP A. MORIN1, Marine Mammal and Turtle Division, Southwest Fisheries Science Cen- ter, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, California 92037, U.S.A. and Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92037, U.S.A.; C. SCOTT BAKER Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 07365, U.S.A.; REID S. BREWER Fisheries Technology, University of Alaska South- east, 1332 Seward Avenue, Sitka, Alaska 99835, U.S.A.; ALEXANDER M. BURDIN Kam- chatka Branch of the Pacific Geographical Institute, Partizanskaya Str. 6, Petropavlovsk- Kamchatsky, 683000 Russia; MEREL L. DALEBOUT School of Biological, Earth, and Environ- mental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; JAMES P. DINES Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.; IVAN D. FEDUTIN AND OLGA A. FILATOVA Faculty of Biology, Moscow State University, Moscow 119992, Russia; ERICH HOYT Whale and Dol- phin Conservation, Park House, Allington Park, Bridport, Dorset DT6 5DD, United King- dom; JEAN-LUC JUNG Laboratoire BioGEMME, Universite de Bretagne Occidentale, Brest, France; MORGANE LAUF Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, California 92037, U.S.A.; CHARLES W.
    [Show full text]
  • Estimating the Energy Expenditure of Endotherms at the Species Level
    Canadian Journal of Zoology Estimating the energy expenditure of endotherms at the species level Journal: Canadian Journal of Zoology Manuscript ID cjz-2020-0035 Manuscript Type: Article Date Submitted by the 17-Feb-2020 Author: Complete List of Authors: McNab, Brian; University of Florida, Biology Is your manuscript invited for consideration in a Special Not applicable (regular submission) Issue?: Draft arvicoline rodents, BMR, Anatidae, energy expenditure, endotherms, Keyword: Meliphagidae, Phyllostomidae © The Author(s) or their Institution(s) Page 1 of 42 Canadian Journal of Zoology Estimating the energy expenditure of endotherms at the species level Brian K. McNab B.K. McNab, Department of Biology, University of Florida 32611 Email for correspondence: [email protected] Telephone number: 1-352-392-1178 Fax number: 1-352-392-3704 The author has no conflict of interest Draft © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 2 of 42 McNab, B.K. Estimating the energy expenditure of endotherms at the species level. Abstract The ability to account with precision for the quantitative variation in the basal rate of metabolism (BMR) at the species level is explored in four groups of endotherms, arvicoline rodents, ducks, melaphagid honeyeaters, and phyllostomid bats. An effective analysis requires the inclusion of the factors that distinguish species and their responses to the conditions they encounter in the environment. These factors are implemented by changes in body composition and are responsible for the non-conformity of species to a scaling curve. Two concerns may limit an analysis. The factors correlatedDraft with energy expenditure often correlate with each other, which usually prevents them from being included together in an analysis, thereby preventing a complete analysis, implying the presence of factors other than mass.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Controlling Pocket Gopher Damage to Conifer Seedlings D.S
    FOREST PROTECTION EC 1255 • Revised May 2003 $2.50 Controlling Pocket Gopher Damage to Conifer Seedlings D.S. deCalesta, K. Asman, and N. Allen Contents ocket gophers (or just plain Gopher habits and habitat.............. 1 P “gophers”) damage conifer seed- Control program ........................... 2 lings on thousands of Identifying the pest ......................2 acres in Washington, Assessing the need for treatment ...3 Idaho, and Oregon Damage control techniques ...........3 annually. They invade clearcuts and Applying controls .......................... 7 clip (cut off) roots or Figure 1.—Typical Oregon pocket gopher. Christmas tree plantations .............7 girdle (remove bark from) the bases of conifer seedlings and saplings, causing significant economic losses. Forest plantations ........................ 7 This publication will help you design a program to reduce or eliminate Summary .................................... 8 gopher damage to seedlings and saplings in your forest plantation or Christmas tree farm. Sources of supply ......................... 8 First, we describe pocket gophers, their habits, and habitats. Then we For further information .................. 8 discuss procedures for controlling pocket gopher damages—control techniques, their effectiveness and hazard(s) to the environment, and their use under a variety of tree-growing situations. Gopher habits and habitat Three species of pocket gopher can damage conifer seedlings. The two smaller ones, the northern pocket gopher and the Mazama pocket gopher, are 5 to 9 inches long and brown with some white beneath the chin and belly. The northern gopher is found east of the Cascade Mountains in Oregon and Washington and in Idaho; the Mazama lives in Oregon and Washington west of the Cascades. David S. deCalesta, former Exten- The Camas pocket gopher is similar looking, but larger (10 to 12 inches) sion wildlife specialist, and Kim than the two others.
    [Show full text]
  • Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments
    National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR–2009/278 ON THE COVER: Top: Wupatki National Monument; bottom left: bobcat (Lynx rufus); bottom right: Wupatki pocket mouse (Perogna- thus amplus cineris) at Wupatki National Monument. Photos courtesy of U.S. Geological Survey/Charles Drost. Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR—2009/278 Author Charles Drost U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Editing and Design Jean Palumbo National Park Service, Southern Colorado Plateau Network Northern Arizona University Flagstaff, Arizona December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Morphological Disparity Among Rock Voles of the Genus <I>Alticola</I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2012 Morphological Disparity among Rock Voles of the Genus Alticola from Mongolia, Kazakhstan and Russia (Rodentia, Cricetidae) V. N. Bolshakov Russian Academy of Sciences, [email protected] I. A. Vasilyeva Russian Aacdemy of Sciences A. G. Vasilyev Russian Academy of Sciences Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, and the Other Animal Sciences Commons Bolshakov, V. N.; Vasilyeva, I. A.; and Vasilyev, A. G., "Morphological Disparity among Rock Voles of the Genus Alticola from Mongolia, Kazakhstan and Russia (Rodentia, Cricetidae)" (2012). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 13. http://digitalcommons.unl.edu/biolmongol/13 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Copyright 2012, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2012 (12): 105 –115 Morphological disparity among Rock voles of the genus Alticola from Mongolia, Kazakhstan and Russia (Rodentia, Cricetidae) V.N. Bolshakov, I.A.
    [Show full text]
  • Suncus Lixus – Greater Dwarf Shrew
    Suncus lixus – Greater Dwarf Shrew transformed landscapes. It occurs in a number of protected areas and can be locally common in suitable habitat, such as riverine woodland, sandveld and moist grasslands. There is no evidence to suggest a net population decline. However, we caution that molecular data, coupled with further field surveys to delimit Photograph distribution more accurately, are needed to determine whether the highveld grassland and subtropical wanted grasslands subpopulations comprise separate species. If so, both species will need to be reassessed as high rates of grassland habitat loss in both regions may qualify one or both species for a threatened status. Key interventions include protected area expansion of moist grassland and riverine woodland habitats, as well as providing incentives for landowners to sustain natural Regional Red List status (2016) Least Concern* vegetation around wetlands and keep livestock or wildlife at ecological carrying capacity. National Red List status (2004) Data Deficient Regional population effects: There is a disjunct Reasons for change Non-genuine change: distribution between populations in the assessment region Change in risk and the rest of its range. This species is also a poor tolerance disperser. Thus there is not suspected to be a significant Global Red List status (2008) Least Concern rescue effect. TOPS listing (NEMBA) None CITES listing None Distribution Throughout the global range of the Greater Dwarf Shrew Endemic No there are only a few scattered records (Skinner & *Watch-list Data Chimimba 2005). However, it is a widespread species that ranges through East Africa, Central Africa and southern As the colloquial name indicates, although this is Africa.
    [Show full text]
  • Cycles and Synchrony in the Collared Lemming (Dicrostonyx Groenlandicus) in Arctic North America
    Oecologia (2001) 126:216–224 DOI 10.1007/s004420000516 Martin Predavec · Charles J. Krebs · Kjell Danell Rob Hyndman Cycles and synchrony in the Collared Lemming (Dicrostonyx groenlandicus) in Arctic North America Received: 11 January 2000 / Accepted: 21 August 2000 / Published online: 19 October 2000 © Springer-Verlag 2000 Abstract Lemming populations are generally character- Introduction ised by their cyclic nature, yet empirical data to support this are lacking for most species, largely because of the Lemmings are generally known for their multiannual time and expense necessary to collect long-term popula- density fluctuations known as cycles. Occurring in a tion data. In this study we use the relative frequency of number of different species, these cycles are thought to yearly willow scarring by lemmings as an index of lem- have a fairly regular periodicity between 3 and 5 years, ming abundance, allowing us to plot population changes although the amplitude of the fluctuations can vary dra- over a 34-year period. Scars were collected from 18 sites matically. The collared lemming, Dicrostonyx groen- in Arctic North America separated by 2–1,647 km to in- landicus, is no exception, with earlier studies suggesting vestigate local synchrony among separate populations. that this species shows a strong cyclic nature in its popu- Over the period studied, populations at all 18 sites lation fluctuations (e.g. Chitty 1950; Shelford 1943). showed large fluctuations but there was no regular peri- However, later studies have shown separate populations odicity to the patterns of population change. Over all to be cyclic (Mallory et al. 1981; Pitelka and Batzli possible combinations of pairs of sites, only sites that 1993) or with little or no population fluctuations (Krebs were geographically connected and close (<6 km) et al.
    [Show full text]