Perfiles De Expresión Génica De Los Tumores De Mama Hereditarios

Total Page:16

File Type:pdf, Size:1020Kb

Perfiles De Expresión Génica De Los Tumores De Mama Hereditarios UNIVERSIDAD AUTÓNOMA DE MADRID Perfiles de expresión génica de los tumores de mama hereditarios Tesis doctoral que presenta para optar al título de Doctor por la Universidad Autónoma de Madrid el Licenciado en Biología Ricardo Ramires Fernández Madrid, diciembre de 2009 Tesis Doctoral dirigida por la Doctora Ana Osorio Cabrero, Investigadora del Programa de Genética del Cáncer Humano del Centro Nacional de Investigaciones Oncológicas Dr. Javier Benítez, Director del Programa de Genética del Cáncer Humano del Centro Nacional de Investigaciones Oncológicas (CNIO) y Profesor Honorario del Departamento de Biología Molecular de la Universidad Autónoma de Madrid, como Tutor, CERTIFICA: Que Don Ricardo Ramires Fernández, Licenciado en Biología por la Universidade Católica de Pelotas ‐ Brasil, ha realizado la presente Tesis Doctoral “Perfiles de expresión génica de los tumores de mama hereditarios” y que a su juicio reúne plenamente todos los requisitos necesarios para optar al Grado de Doctor en Biología Molecular, a cuyos efectos será presentado en la Universidad Autónoma de Madrid. El trabajo ha sido realizado bajo su supervisión, autorizando su presentación ante el Tribunal Calificador. Y para que así conste se extiende el presente certificado, Madrid, diciembre de 2009. Vo Bo del Tutor de la Tesis: Javier Benítez Dra. Ana Osorio Cabrero, Investigadora del Programa de Genética del Cáncer Humano del Centro Nacional de Investigaciones Oncológicas (CNIO) como Directora, CERTIFICA: Que Don Ricardo Ramires Fernández, Licenciado en Biología por la Universidade Católica de Pelotas ‐ Brasil, ha realizado la presente Tesis Doctoral “Perfiles de expresión génica de los tumores de mama hereditarios” y que a su juicio reúne plenamente todos los requisitos necesarios para optar al Grado de Doctor en Biología Molecular, a cuyos efectos será presentado en la Universidad Autónoma de Madrid. El trabajo ha sido realizado bajo su dirección, autorizando su presentación ante el Tribunal Calificador. Y para que así conste se extiende el presente certificado, Madrid, diciembre de 2009. Vo Bo de la Directora de la Tesis: Ana Osorio Cabrero FINANCIACIÓN ESTA TESIS DOCTORAL HA SIDO REALIZADA EN EL GRUPO DE GENÉTICA HUMANA DEL PROGRAMA DE GENÉTICA DEL CÁNCER HUMANO DEL CENTRO NACIONAL DE INVESTIGACIONES ONCOLÓGICAS (CNIO), BAJO LA SUPERVISIÓN DE JAVIER BENÍTEZ ORTIZ Y DIRECCIÓN DE ANA OSORIO CABRERO. LOS SIGUIENTES FONDOS HAN PERMITIDO LA REALIZACIÓN DE LA PRESENTE TESIS DOCTORAL: MARIE CURIE SIXTH FRAMEWORK – ONCOTRAIN CNIO (MEST‐2‐CT‐2004‐6423) EL CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED DE ENFERMEDADES RARAS (CIBERER) FONDOS DE INVESTIGACIONES SANITARIAS (FIS) ‐ FIS PI061090 “HOW BIG WE ARE, WE DON’T FIT IN THE WORLD…” Refrán creado en los últimos cuatro años en el Grupo de Genética Humana del CNIO A mi familia, a aquellos que siguen presentes y a los que ya no están pero que también hacen parte de esta caminata Agradecimientos uando decidi começar a compor esta parte da minha tese provavelmente não tivesse nem iniciado meu período de formação universitária, mas alguma coisa me suscitada ao Q ouvido que seriam muitas linhas, muitos nomes e muito que agradecer e lembrar. Cuando decidi comenzar a componer esta parte de mi tesis, probablemente ni hubiera empezado mi período de formación universitária, pero algo ya me decía que serían muchas líneas, muchos nombres y mucho que agradecer y recordar. É extremamente fácil começar, porém, não o é acabar‐lo. Pai e mãe: vocês que depositaram em mim o maior dos vossos desejos e amor, que fizeram de vossas vidas uma abdicação e doação à causa dos seus filhos. Quantas noites de insônia, sustos ou trabalho maior que levar nove meses junto a vocês. Quantas coisas me propiciaram, quantos sorrisos arrancaram da minha face e quanto exemplo de deram. Das noites e madrugadas de trabalho, tudo para dar‐ me do melhor, brigas pelo teu filho, paciência – e a impaciência – de ensinar‐me o caminho adequado. Da minha personalidade levo um pouco de cada um: a maneira de ver a vida de ti, Pai e a vontade de vencer de ti, Mãe. Vocês quiseram‐me, geraram‐me, alimentaram‐me, criaram‐me e ensinaram‐me que o mais importante, acima de tudo, é a dedicação, a força de querer ser mais e melhor. Vocês são a razão da minha existência. Entretanto, este carinho não é único. Como não falar de meu irmão de sangue. Mano, quanto aprendi contigo e, sobretudo, quanto sigo aprendendo. Desde as típicas brigas entre irmãos até os dias de hoje, que saibas o quanto significas para mim. Es uma pessoa inigualável, de gênio forte e de uma inteligência invejável que espero, geneticamente, poder tê‐la herdado. Desde as tardes que me viste encerrado na frente do computador, escrevendo intermináveis trabalhos da universidade às visitas que te faço sempre que no Brasil estou, ainda es meu grande professor das disciplinas que se chamam moral, caráter e personalidade. À Rita não tenho palavras para agradecer o apoio e o amor de segunda mãe. Amo‐vos minha GRANDE família. Gostaria que vocês soubessem que cada dia é uma nova chance de aprender mais sobre nós mesmos, de se importar mais com os outros, de rir mais do que ríamos, de realizar mais do que pensávamos ser possível, de ser mais do que éramos antes. Reconheço e agradeço o inestimável e importante apoio, amor, compreensão, abdicação e sacrifício que me foi dedicado nesta longa caminhada. Alegrem‐se, pois os méritos desta vitória também são seus! Como não mencionar meus saudosos avôs. Vó Zilma e vô Beto, a memória que mantenho viva de vocês não podia ser mais alegre e fraterna. Desde as primeiras palavras as quais tive o privilegio de ensinar à minha querida avó materna a delinear‐las e sua sábia e singela forma de escutar‐me até as saudosas tardes de filme na casa de meu avô paterno, as tardes com bolinho‐ de‐chuva e as vezes que me buscava no colégio com as mãos dadas, são momentos ímpares que, ainda criança, as recordo e as conservarei por toda minha vida. Por outro lado, o perene apoio da “Vó Zoé” ainda me dá forças a seguir esta batalha no outro lado do Atlântico. Vó, tu es uma das poucas pessoas capazes de entender‐me e perseveraste junto a mim. Neste momento, também te apresentas a um título de Doutora em Ciências da Vida – obrigado por ensinar‐me a ler, escrever e amar as letras que agora levam teu nome. As amizades, juntamente com minha família, são os responsáveis pela minha vitória. Há pessoas com as quais não compartimos laços sangüíneos, mas dividimos o nosso coração. Como não recordar àqueles que me viram crescer ou que cresceram comigo. Ainda, àqueles que não tiveram a oportunidade de seguir seu caminho comigo por terem sido chamados a estar junto ao que denominados Ele, o meu muito obrigado e muitas saudades. Pessoas importantes foram muitas e infelizmente poucas poderei nomear aqui. Lucinha, Cacaio, Carlos e Cadico, como não se lembrar de vocês. Esta infância atravessando a rua, percorrendo o bairro com a bicicleta, os passeios de Fusca e o carinho incondicional. Vocês foram peça‐chave no meu caminho e lhes devo o meu muito obrigado. Marcos, meu padrinho, a família Cardoso é única. Desde o dia cinco de agosto de 1996 me considero uma pessoa com mais sorte. Começamos uma árdua caminhada, de dois amigos que, hoje, seriam nada mais nada menos que grandes irmãos. Foram muitos anos de Colégio Gonzaga, Grupo Jovem, trabalhos de grupo, estudos do “Provão”, alguma vez ou outra no CTG e muitas caipirinhas. Sergio, Valéria, Marcos, Mateus, Bruna, Vó e Marcia, vocês são outra família para mim, uma família que, ainda longe, sabereis que segue ali e que os oferecerei minha gratidão eterna e carinho de filho caçula. Cada um, à sua maneira, contribuiu para que este manuscrito fosse realidade. Há vezes na vida que não sabemos em que caminho estamos nem qual caminho escolher. São nestes momentos que pessoas tão importantes exercem um papel de anjo da guarda. Nestas simples, porém, gratas linhas, dedico esta tese, também, aos meus padrinhos José Américo e Noeli. Foram vários momentos de presença fraternal e as recordarei com muito carinho por toda a minha vida. Desde os cuidados na infância, a atenção na adolescência às conversas acadêmicas na fase adulta, são pessoas que sempre me estenderam a mão e abriram o seu coração. Vocês, dindos, e ao meu querido primo‐irmão Juliano, o meu muito obrigado e a certeza de que este documento também tem palavras de vosso punho. Na UCPel, é impossível não lembrar dos meus queridos professores que me incentivaram a começar e seguir no mundo da investigação e não desistir das Ciências Biológicas – Ricardo, nem tudo é genética! Graça e Gilberto, que me acolhisteis no Laboratório de Genética da Universidade onde tanto aprendi. Ao técnico Abilio, tua filosofia é mais que um poema, é um ensinamento de viver, em memória, agradeço‐te. Lu, minha professora de bioquímica, diretora e minha amiga: participaste em todas as fases desta caminhada e sabes o árduo que é seguir adiante sendo um little alien fora das fronteiras. Resumindo, dizem que é medíocre o aluno que não supera seu professor; dado o panorama, vejo complicado que o consiga. Obrigado, mestres! Por fin, y tras una pequeña vuelta al mundo, llego al CNIO el 2004 como estudiante de verano y fui acogido como el brasileño atípico que, aunque con nivel ‐1 de castellano, me sobraban sonrisas dado que no me enteraba de mucho. En el mismo año vuelvo a Brasil, concluyo la carrera y una vez más, regreso al CNIO, pero ahora con la incumbencia de una tesis doctoral por desarrollar. De ahí, las descubiertas, muchísimo más positivas que negativas – empecé bien, ¡ostras! Me ha tocado la Ana Osorio ¿Qué pasará? Entre extracciones de ARN, amplificaciones, buff, el mundo de las pipetas me fascinaba y poco a poco, iba haciendo parte y buceando por el nuevo mundo de la biología molecular y de los micro…qué? Sí, microarrays.
Recommended publications
  • Γ-Sarcoglycan Deficiency Increases Cell Contractility, Apoptosis And
    Research Article 1405 γ-Sarcoglycan deficiency increases cell contractility, apoptosis and MAPK pathway activation but does not affect adhesion Maureen A. Griffin1,2, Huisheng Feng1,3, Manorama Tewari1,2, Pedro Acosta1,3, Masataka Kawana1,3, H. Lee Sweeney1,3,4 and Dennis E. Discher1,2,4,* 1Pennsylvania Muscle Institute, University of Pennsylvania Medical Center, D-700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6083, USA 2Department of Chemical and Biomolecular Engineering, Towne Building, 220 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104-6393, USA 3Department of Physiology, University of Pennsylvania Medical Center, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA 4Graduate Group in Cell and Molecular Biology, University of Pennsylvania Medical Center, 3620 Hamilton Walk, Philadelphia, PA 19104-6058, USA *Author for correspondence (e-mail: [email protected]) Accepted 10 January 2005 Journal of Cell Science 118, 1405-1416 Published by The Company of Biologists 2005 doi:10.1242/jcs.01717 Summary The functions of γ-sarcoglycan (γSG) in normal myotubes striations were more prominent in γSG-deficient myotubes are largely unknown, however γSG is known to assemble than in normal cells. An initial phosphoscreen of more than into a key membrane complex with dystroglycan and its 12 signaling proteins revealed a number of differences deficiency is one known cause of limb-girdle muscular between normal and γSG–/– muscle, both before and after dystrophy. Previous findings of apoptosis from γSG- stretching. MAPK-pathway proteins displayed the largest deficient mice are extended here to cell culture where changes in activation, although significant phosphorylation apoptosis is seen to increase more than tenfold in γSG- also appeared for other proteins linked to hypertension.
    [Show full text]
  • Further Evidence for the Organisation of the Four Sarcoglycans Proteins Within the Dystrophin–Glycoprotein Complex
    European Journal of Human Genetics (1999) 7, 251–254 © 1999 Stockton Press All rights reserved 1018–4813/99 $12.00 t http://www.stockton-press.co.uk/ejhg SHORT REPORT Further evidence for the organisation of the four sarcoglycans proteins within the dystrophin–glycoprotein complex M Vainzof1,2, ES Moreira2, G Ferraz3, MR Passos-Bueno2, SK Marie1 and M Zatz2 1Departamento de Neurologia, FMUSP, S˜ao Paulo 2Departamento de Biologia, IB-USP, S˜ao Paulo 3Departamento de Gen´etica, UFPE, Recife, PE, Brazil Based on the pattern of distribution of the SG proteins in patients with LGMD2C and 2D, and on the observed decreased abundance of dystrophin through WB in some sarcoglycans (SG) patients, we have recently suggested that α, â and δ subunits of sarcoglycan complex might be more closely associated and that γ-SG might interact more directly with dystrophin. Two additional SG patients here reported give further support to these suggestions: an LGMD2F patient showed patchy labelling for γ-SG, despite the lack of staining of the other three SG proteins; an LGMD2C boy showed deficiency in dystrophin by means of WB and IF, comparable with an DMD manifesting carrier. These two patients represent further evidence of a closer relation of α, â and δ-SG than of γ-SG and of the possible association of γ-SG with dystrophin. In addition the LGMD2C patient illustrates the potential risk of misdiagnosis using only dystrophin analysis, in cases with no positive family history, or when DNA analysis is not informative. Keywords: sarcoglycans; muscular dystrophy;
    [Show full text]
  • Anti-SGCG / Gamma Sarcoglycan Antibody (ARG41710)
    Product datasheet [email protected] ARG41710 Package: 100 μl anti-SGCG / gamma Sarcoglycan antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes SGCG / gamma Sarcoglycan Tested Reactivity Hu Tested Application IHC-P, IP, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name SGCG / gamma Sarcoglycan Antigen Species Human Immunogen Synthetic peptide of Human SGCG / gamma Sarcoglycan Conjugation Un-conjugated Alternate Names 35DAG; DMDA1; TYPE; SCG3; DMDA; Gamma-sarcoglycan; DAGA4; 35 kDa dystrophin-associated glycoprotein; A4; SCARMD2; Gamma-SG; LGMD2C; MAM Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 IP 1:50 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 32 kDa Observed Size ~ 32 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol SGCG Gene Full Name sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) Background This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with dystrophin.
    [Show full text]
  • Big, Bad Hearts: from Flies to Man
    COMMENTARY Big, bad hearts: From flies to man Fabrizio C. Serluca and Mark C. Fishman* Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139 enetic screens have revealed sponsible gene is unknown, so it would important molecular pathways related essential genes that guide be very useful to have a compendium of to contractility are shared and, as Wolf metazoan complexity, from candidate genes. That is what a model et al. (4) demonstrate, that mutations of fates of individual cells, to system might offer. sarcomeric proteins do lead to dimin- Gpatterning of cell arrays, to their assem- ished contractile function and cardiac bly into organs (1–3). Genetic Screens for Physiology? enlargement. Now the Ur-genetic organism Dro- One vertebrate species, the zebrafish, Of course, the physiology of the hu- sophila is making a play to provide has already been subject to screens for man heart differs in many regards genes for a next wave of biology: heart mutations, including those that from that of Drosophila. The Drosoph- integrative physiology. How do organs interfere with contractility (3). One ila heart is a tube, lacking endothe- move, beat, digest, secrete, behave, and advantage of the zebrafish embryo is lium, composed of two thin layers of interact in manners adjusted to changing its transparency, so contractility can be muscle oriented in the circumferential needs of an organism? How can such monitored visually. In that species, mu- and longitudinal directions (11). Con- features be monitored without perturb- tations in sarcomeric proteins and tractions squeeze along the tube and ing the very processes under study? novel signaling pathways have been drive perilymph in alternating direc- In a recent issue of PNAS, Wolf et al.
    [Show full text]
  • Genetic Modifiers of Hereditary Neuromuscular Disorders
    cells Article Genetic Modifiers of Hereditary Neuromuscular Disorders and Cardiomyopathy Sholeh Bazrafshan 1, Hani Kushlaf 2 , Mashhood Kakroo 1, John Quinlan 2, Richard C. Becker 1 and Sakthivel Sadayappan 1,* 1 Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (S.B.); [email protected] (M.K.); [email protected] (R.C.B.) 2 Department of Neurology and Rehabilitation Medicine, Neuromuscular Center, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (H.K.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +1-513-558-7498 Abstract: Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Citation: Bazrafshan, S.; Kushlaf, H.; Kakroo, M.; Quinlan, J.; Becker, R.C.; Polyneuropathy, and Valosin-containing Protein-related Myopathy.
    [Show full text]
  • Sarcoglycan a Mutation in Miniature Dachshund Dogs Causes Limb-Girdle Muscular Dystrophy 2D
    UC Davis UC Davis Previously Published Works Title Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D. Permalink https://escholarship.org/uc/item/3r82r6wn Journal Skeletal muscle, 11(1) ISSN 2044-5040 Authors Mickelson, James R Minor, Katie M Guo, Ling T et al. Publication Date 2021-01-07 DOI 10.1186/s13395-020-00257-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mickelson et al. Skeletal Muscle (2021) 11:2 https://doi.org/10.1186/s13395-020-00257-y RESEARCH Open Access Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D James R. Mickelson1* , Katie M. Minor1, Ling T. Guo2, Steven G. Friedenberg3, Jonah N. Cullen3, Amanda Ciavarella4, Lydia E. Hambrook4, Karen M. Brenner5, Sarah E. Helmond6, Stanley L. Marks7 and G. Diane Shelton2 Abstract Background: A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. Methods: Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. Results: Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents.
    [Show full text]
  • Validación Y Estudio De La Implicación De Los Genes Adrbk2, Adrb1, Adra2b, Axin 2, Atp6v1c1 Y Atp6v0e En El Carcinoma Oral De
    FACULTADE DE MEDICINA E ODONTOLOXÍA Departamento de Estomatoloxía VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL TESIS DOCTORAL EVA MARÍA OTERO REY Santiago de Compostela, enero de 2006 FACULTAD DE MEDICINA Y ODONTOLOGÍA DEPARTAMENTO DE ESTOMATOLOGÍA VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL Autora: EVA MARÍA OTERO REY Santiago de Compostela, 20 de Enero de 2006. D. ABEL GARCÍA GARCÍA, Profesor Titular de Cirugía Oral y Maxilofacial de la Facultad de Medicina y Odontología de la Universidad de Santiago de Compostela; D. FRANCISCO BARROS ANGUEIRA, Doctor en Biología y Jefe de Laboratorio de la Fundación Pública Galega de Medicina Xenómica del Sergas; y D. JOSÉ MANUEL SOMOZA MARTÍN, Doctor en Odontología de la Universidad de Santiago de Compostela, CERTIFICAN: Que la presente Tesis Doctoral titulada “VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL”, ha sido elaborada por Dña. EVA MARÍA OTERO REY bajo nuestra dirección, y hallándose concluida, autorizamos su presentación a fin de que pueda ser defendida ante el Tribunal correspondiente. Y para que así conste, se expide la presente certificación en Santiago de Compostela, a 20 de Enero de 2006. Prof. Dr. D. Abel García García Dr. D. Francisco Barros Angueira Dr.
    [Show full text]
  • Pigs with δ-Sarcoglycan Deficiency Exhibit Traits of Genetic
    Laboratory Investigation (2020) 100:887–899 https://doi.org/10.1038/s41374-020-0406-7 TECHNICAL REPORT Pigs with δ-sarcoglycan deficiency exhibit traits of genetic cardiomyopathy 1,2 1 1 3 3 Hitomi Matsunari ● Michiyo Honda ● Masahito Watanabe ● Satsuki Fukushima ● Kouta Suzuki ● 3 2 1 1 2 Shigeru Miyagawa ● Kazuaki Nakano ● Kazuhiro Umeyama ● Ayuko Uchikura ● Kazutoshi Okamoto ● 1 4 3 1,2 Masaki Nagaya ● Teruhiko Toyo-oka ● Yoshiki Sawa ● Hiroshi Nagashima Received: 14 December 2019 / Revised: 19 January 2020 / Accepted: 19 January 2020 / Published online: 14 February 2020 © The Author(s) 2020. This article is published with open access Abstract Genetic cardiomyopathy is a group of intractable cardiovascular disorders involving heterogeneous genetic contribution. This heterogeneity has hindered the development of life-saving therapies for this serious disease. Genetic mutations in dystrophin and its associated glycoproteins cause cardiomuscular dysfunction. Large animal models incorporating these genetic defects are crucial for developing effective medical treatments, such as tissue regeneration and gene therapy. In the present study, we knocked out the δ-sarcoglycan (δ-SG) gene (SGCD) in domestic pig by using a combination of efficient de δ 1234567890();,: 1234567890();,: novo gene editing and somatic cell nuclear transfer. Loss of -SG expression in the SGCD knockout pigs caused a concomitant reduction in the levels of α-, β-, and γ-SG in the cardiac and skeletal sarcolemma, resulting in systolic dysfunction, myocardial tissue degeneration, and sudden death. These animals exhibited symptoms resembling human genetic cardiomyopathy and are thus promising for use in preclinical studies of next-generation therapies. Introduction dilated cardiomyopathy (DCM), arrhythmogenic right ven- tricular cardiomyopathy, left ventricular noncompaction, and Idiopathic cardiomyopathy is a serious cardiac disorder restrictive cardiomyopathy [1, 3].
    [Show full text]
  • Muscular Dystrophies Involving the Dystrophin–Glycoprotein Complex: an Overview of Current Mouse Models Madeleine Durbeej and Kevin P Campbell*
    349 Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models Madeleine Durbeej and Kevin P Campbell* The dystrophin–glycoprotein complex (DGC) is a multisubunit dystrophies are a heterogeneous group of disorders. complex that connects the cytoskeleton of a muscle fiber to its Patients with DMD have a childhood onset phenotype and surrounding extracellular matrix. Mutations in the DGC disrupt die by their early twenties as a result of either respiratory the complex and lead to muscular dystrophy. There are a few or cardiac failure, whereas patients with BMD have naturally occurring animal models of DGC-associated moderate weakness in adulthood and may have normal life muscular dystrophy (e.g. the dystrophin-deficient mdx mouse, spans. The limb–girdle muscular dystrophies have a dystrophic golden retriever dog, HFMD cat and the highly variable onset and progression, but the unifying δ-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster) theme among the limb–girdle muscular dystrophies is the that share common genetic protein abnormalities similar to initial involvement of the shoulder and pelvic girdle those of the human disease. However, the naturally occurring muscles. Moreover, muscular dystrophies may or may not animal models only partially resemble human disease. In be associated with cardiomyopathy [1–4]. addition, no naturally occurring mouse models associated with loss of other DGC components are available. This has Combined positional cloning and candidate gene encouraged the generation of genetically engineered mouse approaches have been used to identify an increasing number models for DGC-linked muscular dystrophy. Not only have of genes that are mutated in various forms of muscular analyses of these mice led to a significant improvement in our dystrophy.
    [Show full text]
  • Dynamic Changes in the Subcellular Localization of Drosophila Β-Sarcoglycan During the Cell Cycle
    CELL STRUCTURE AND FUNCTION 31: 173–180 (2006) © 2006 by Japan Society for Cell Biology Dynamic Changes in the Subcellular Localization of Drosophila β-Sarcoglycan during the Cell Cycle Reina Hashimoto1 and Masamitsu Yamaguchi1∗ 1Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan ABSTRACT. One of the proposed roles of sarcoglycan is to stabilize dystrophin glycoprotein complexes in muscle sarcolemma. Involvement in signal transduction has also been proposed and abnormalities in some sarcoglycan genes are known to be responsible for muscular dystrophy. While characterization of sarcoglycans in muscle has been performed, little is known about its functions in the non-muscle tissues in which mammalian sarcoglycans are expressed. Here, we investigated temporal and spatial expression patterns of Drosophila β-sarcoglycan (dScgβ) during development by immunohistochemistry. In addition to almost ubiquitous expression in various tissues and organs, as seen for its mammalian counterpart, anti-dScgβ staining data of embryos, eye imaginal discs, and salivary glands demonstrated cytoplasmic localization during S phase in addition to plasma membrane staining. Furthermore we found that subcellular localization of dScgβ dramatically changes during mitosis through possible association with tubulin. These observations point to a complex role of sarcoglycans in non-mus- cle tissues. Key words: sarcoglycan/Drosophila/tubulin/cell cycle Introduction plex is to stabilize DGC itself by interacting with dystro- phin, dystroglycan, and other constitutive proteins (Chen et β-sarcoglycan is a member of the sarcoglycan complex. al., 2006; Crosbie et al., 1999; Durbeej et al., 2000; Straub This forms part of the dystrophin glycoprotein complex et al., 1998).
    [Show full text]
  • Factors Regulating the Function and Assembly of the Sarcoglycan Complex in Brain
    Factors regulating the function and assembly of the sarcoglycan complex in brain A thesis submitted for the Degree of Doctor of Philosophy at Cardiff University School of Medicine Francesca Carlisle 2016 Supervised by Professor Derek Blake and Professor Anthony Isles Thesis summary Myoclonus dystonia (MD) is a neurogenic movement disorder that can be caused by mutations in the SGCE gene encoding ε-sarcoglycan. ε-sarcoglycan belongs to the sarcoglycan family of cell surface-localised, single-pass transmembrane proteins originally identified in muscle where they form a heterotetrameric subcomplex of the dystrophin- associated glycoprotein complex (DGC). Mutations in the SGCA, SGCB, SGCG and SGCD genes encoding α-, β-, γ- and δ-sarcoglycan cause limb-girdle muscular dystrophy (LGMD). There is no phenotypic overlap between MD and LGMD. LGMD-associated sarcoglycan mutations impair trafficking of the entire sarcoglycan complex to the cell surface and destabilise the DGC in muscle, while MD-associated mutations typically result in loss of ε- sarcoglycan from the cell surface. This suggests cell surface ε-sarcoglycan but not other sarcoglycans is required for normal brain function. To gain insight into ε-sarcoglycan’s function(s) in the brain, immunoaffinity purification was used to identify ε-sarcoglycan- interacting proteins. Ubiquitous and brain-specific ε-sarcoglycan isoforms co-purified with three other sarcoglycans including ζ-sarcoglycan (encoded by SGCZ) from the brain. Incorporation of an LGMD-associated β-sarcoglycan mutant into the brain sarcoglycan complex impaired the formation of the βδ-sarcoglycan core but failed to abrogate the association and trafficking of ε- and ζ-sarcoglycan in heterologous cells. Both ε-sarcoglycan isoforms also co-purified with β-dystroglycan, indicating inclusion in DGC-like complexes.
    [Show full text]
  • Childhood Onset Limb-Girdle Muscular Dystrophies in the Aegean Part of Turkey
    Acta Myologica • 2018; XXXVII: p. 210-220 Childhood onset limb-girdle muscular dystrophies in the Aegean part of Turkey Uluç Yi̇ş1, Gülden Dini̇ ż 2, Filiz Hazan3, Hülya Sevcan Dai̇magüler4 5, Bahar Toklu Baysal6, Figen Baydan2, Gülçin Akinci6, Aycan Ünalp6, Gül Aktan7, Erhan Bayram1, Semra Hiz1, Cem Paketçi̇1, Derya Okur1, Erdener Özer8, Ayça Ersen Danyeli̇8, Muzaffer Polat9, Gökhan Uyanik10 11 and Sebahattin Çirak4 5 ¹ Dokuz Eylül University, School of Medicine, Department of Pediatrics, Division of Child Neurology, İzmir, Turkey; ² Neuromuscular Disease Center, Tepecik Research Hospital, İzmir, Turkey; ³ Dr Behçet Uz Children’s Research Hospital, Department of Medical Genetics, İzmir, Turkey; 4 University Hospital Cologne, Department of Pediatrics, Cologne, Germany; 5 Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; 6 Dr Behçet Uz Children’s Research Hospital, Department of Pediatric Neurology, İzmir, Turkey; 7 Ege University, School of Medicine, Department of Pediatrics, Division of Child Neurology, İzmir, Turkey; 8 Dokuz Eylül University, School of Medicine, Department of Pathology, İzmir, Turkey; 9 Celal Bayar University, School of Medicine, Department of Pediatrics, Division of Child Neurology, Manisa, Turkey; 10 Center for Medical Genetics, Hanusch Hospital, Vienna, Austria; 11 Medical Faculty, Sigmund Freud Private University, Vienna, Austria The aim of this study is to analyze the epidemiology of the ders. They are inherited in an autosomal recessive or clinical and genetic features of childhood-onset limb-girdle dominant manner. Thirty-three recessively and domi- muscular dystrophies (LGMD) in the Aegean part of Turkey. In total fifty-six pediatric cases with LGMD followed in four nantly inherited forms have currently been identified.
    [Show full text]