The Role of Calcium and Calcium/Calmodulin-Dependent Kinases in Skeletal Muscle Plasticity and Mitochondrial Biogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Muscular System
THE MUSCULAR SYSTEM COMPILED BY HOWIE BAUM 1 Muscles make up the bulk of the body and account for 1/3 of its weight.!! Blood vessels and nerves run to every muscle, helping control and regulate each muscle’s function. The muscular system creates body heat and also moves the: Bones of the Skeletal system Food through Digestive system Blood through the Circulatory system Fluids through the Excretory system MUSCLE TISSUE The body has 3 main types of muscle tissue 1) Skeletal, 2) Smooth, and 3) Cardiac SKELETAL MUSCLE SMOOTH MUSCLE CARDIAC MUSCLE Skeletal muscles attach to and move bones by contracting and relaxing in response to voluntary messages from the nervous system. Skeletal muscle tissue is composed of long cells called muscle fibers that have a striated appearance. Muscle fibers are organized into bundles supplied by blood vessels and innervated by motor neurons. Muscle structure Skeletal (striated or voluntary) muscle consists of densely packed groups of hugely elongated cells known as myofibers. These are grouped into bundles (fascicles). A typical myofiber is 2–3 centimeters ( 3/4–1 1/5 in) long and 0.05millimeters (1/500 inch) in diameter and is composed of narrower structures – myofibrils. These contain thick and thin myofilaments made up mainly of the proteins actin and myosin. Numerous capillaries keep the muscle supplied with the oxygen and glucose needed to fuel contraction. Skeletal Muscles • Skeletal muscles attach to bones by tendons (connective tissue) and enable movement. • Skeletal muscles are mostly voluntary Feel the back of your ankle to feel your Achilles tendon - the largest tendon in your body. -
Γ-Sarcoglycan Deficiency Increases Cell Contractility, Apoptosis And
Research Article 1405 γ-Sarcoglycan deficiency increases cell contractility, apoptosis and MAPK pathway activation but does not affect adhesion Maureen A. Griffin1,2, Huisheng Feng1,3, Manorama Tewari1,2, Pedro Acosta1,3, Masataka Kawana1,3, H. Lee Sweeney1,3,4 and Dennis E. Discher1,2,4,* 1Pennsylvania Muscle Institute, University of Pennsylvania Medical Center, D-700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6083, USA 2Department of Chemical and Biomolecular Engineering, Towne Building, 220 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104-6393, USA 3Department of Physiology, University of Pennsylvania Medical Center, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA 4Graduate Group in Cell and Molecular Biology, University of Pennsylvania Medical Center, 3620 Hamilton Walk, Philadelphia, PA 19104-6058, USA *Author for correspondence (e-mail: [email protected]) Accepted 10 January 2005 Journal of Cell Science 118, 1405-1416 Published by The Company of Biologists 2005 doi:10.1242/jcs.01717 Summary The functions of γ-sarcoglycan (γSG) in normal myotubes striations were more prominent in γSG-deficient myotubes are largely unknown, however γSG is known to assemble than in normal cells. An initial phosphoscreen of more than into a key membrane complex with dystroglycan and its 12 signaling proteins revealed a number of differences deficiency is one known cause of limb-girdle muscular between normal and γSG–/– muscle, both before and after dystrophy. Previous findings of apoptosis from γSG- stretching. MAPK-pathway proteins displayed the largest deficient mice are extended here to cell culture where changes in activation, although significant phosphorylation apoptosis is seen to increase more than tenfold in γSG- also appeared for other proteins linked to hypertension. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics
International Journal of Molecular Sciences Review Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics Martijn van de Locht , Tamara C. Borsboom, Josine M. Winter and Coen A. C. Ottenheijm * Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands; [email protected] (M.v.d.L.); [email protected] (T.C.B.); [email protected] (J.M.W.) * Correspondence: [email protected]; Tel.: +31-(0)-20-444-8123 Abstract: The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of Citation: van de Locht, M.; treatment strategies. -
Further Evidence for the Organisation of the Four Sarcoglycans Proteins Within the Dystrophin–Glycoprotein Complex
European Journal of Human Genetics (1999) 7, 251–254 © 1999 Stockton Press All rights reserved 1018–4813/99 $12.00 t http://www.stockton-press.co.uk/ejhg SHORT REPORT Further evidence for the organisation of the four sarcoglycans proteins within the dystrophin–glycoprotein complex M Vainzof1,2, ES Moreira2, G Ferraz3, MR Passos-Bueno2, SK Marie1 and M Zatz2 1Departamento de Neurologia, FMUSP, S˜ao Paulo 2Departamento de Biologia, IB-USP, S˜ao Paulo 3Departamento de Gen´etica, UFPE, Recife, PE, Brazil Based on the pattern of distribution of the SG proteins in patients with LGMD2C and 2D, and on the observed decreased abundance of dystrophin through WB in some sarcoglycans (SG) patients, we have recently suggested that α, â and δ subunits of sarcoglycan complex might be more closely associated and that γ-SG might interact more directly with dystrophin. Two additional SG patients here reported give further support to these suggestions: an LGMD2F patient showed patchy labelling for γ-SG, despite the lack of staining of the other three SG proteins; an LGMD2C boy showed deficiency in dystrophin by means of WB and IF, comparable with an DMD manifesting carrier. These two patients represent further evidence of a closer relation of α, â and δ-SG than of γ-SG and of the possible association of γ-SG with dystrophin. In addition the LGMD2C patient illustrates the potential risk of misdiagnosis using only dystrophin analysis, in cases with no positive family history, or when DNA analysis is not informative. Keywords: sarcoglycans; muscular dystrophy; -
Anti-SGCG / Gamma Sarcoglycan Antibody (ARG41710)
Product datasheet [email protected] ARG41710 Package: 100 μl anti-SGCG / gamma Sarcoglycan antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes SGCG / gamma Sarcoglycan Tested Reactivity Hu Tested Application IHC-P, IP, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name SGCG / gamma Sarcoglycan Antigen Species Human Immunogen Synthetic peptide of Human SGCG / gamma Sarcoglycan Conjugation Un-conjugated Alternate Names 35DAG; DMDA1; TYPE; SCG3; DMDA; Gamma-sarcoglycan; DAGA4; 35 kDa dystrophin-associated glycoprotein; A4; SCARMD2; Gamma-SG; LGMD2C; MAM Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 IP 1:50 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 32 kDa Observed Size ~ 32 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol SGCG Gene Full Name sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) Background This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with dystrophin. -
Big, Bad Hearts: from Flies to Man
COMMENTARY Big, bad hearts: From flies to man Fabrizio C. Serluca and Mark C. Fishman* Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139 enetic screens have revealed sponsible gene is unknown, so it would important molecular pathways related essential genes that guide be very useful to have a compendium of to contractility are shared and, as Wolf metazoan complexity, from candidate genes. That is what a model et al. (4) demonstrate, that mutations of fates of individual cells, to system might offer. sarcomeric proteins do lead to dimin- Gpatterning of cell arrays, to their assem- ished contractile function and cardiac bly into organs (1–3). Genetic Screens for Physiology? enlargement. Now the Ur-genetic organism Dro- One vertebrate species, the zebrafish, Of course, the physiology of the hu- sophila is making a play to provide has already been subject to screens for man heart differs in many regards genes for a next wave of biology: heart mutations, including those that from that of Drosophila. The Drosoph- integrative physiology. How do organs interfere with contractility (3). One ila heart is a tube, lacking endothe- move, beat, digest, secrete, behave, and advantage of the zebrafish embryo is lium, composed of two thin layers of interact in manners adjusted to changing its transparency, so contractility can be muscle oriented in the circumferential needs of an organism? How can such monitored visually. In that species, mu- and longitudinal directions (11). Con- features be monitored without perturb- tations in sarcomeric proteins and tractions squeeze along the tube and ing the very processes under study? novel signaling pathways have been drive perilymph in alternating direc- In a recent issue of PNAS, Wolf et al. -
Laboratory Methodology for the Histological Study of Skeletal Muscle
ReviewArtículo original Laboratory methodology for the histological study of skeletal muscle Fernando Leiva-Cepas1,2,3, Ignacio Ruz-Caracuel1,2*, María A. Peña-Toledo2,3, Antonio Agüera-Vega1,2, Ignacio Jimena1,2,3, Evelio Luque1,3, José Peña1,2,3 1Departamento de Ciencias Morfológicas. Universidad de Córdoba. Córdoba. 2Grupo de Investigación en Regeneración Muscular. Universidad de Córdoba. 3Instituto Maimónides de Investigación Biomédica de Córdoba. IMIBIC. Córdoba. *Servicio de Anatomía Patológica. Hospital Universitario La Paz, IDIPAZ, Madrid. Received: 11.12.2017 Summary Accepted: 15.02.2018 Skeletal muscle is a malleable and dynamic tissue capable of a high degree of plasticity in regards to its histological confi- guration. In this sense, microscopic study is an important and essential tool for the analysis of adaptive processes -such as hypertrophy or changes of fiber types- and the regeneration or repair of skeletal muscle after injury, in the fields of sports medicine and traumatology respectively. While light microscopy addresses the study of the different constitutive elements into the skeletal muscle and their relationships with each other that determine the organ histoarchitecture, with electron microscopy an ultrastructural analysis is carried out that allows to relate the structure and function of the individual cells. This article illustrates a pragmatic and practical approach, based on personal experience and a review of the literature, from the conditions in obtaining and sending samples of skeletal muscle to the laboratory to the procedures to prepare them for histological study (sections of cryostat, paraffin sections and electron microscopy). Especially we focus on the description of Key words: the processing by freezing and recommendations to follow, as this is the ideal method for this tissue. -
Genetic Modifiers of Hereditary Neuromuscular Disorders
cells Article Genetic Modifiers of Hereditary Neuromuscular Disorders and Cardiomyopathy Sholeh Bazrafshan 1, Hani Kushlaf 2 , Mashhood Kakroo 1, John Quinlan 2, Richard C. Becker 1 and Sakthivel Sadayappan 1,* 1 Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (S.B.); [email protected] (M.K.); [email protected] (R.C.B.) 2 Department of Neurology and Rehabilitation Medicine, Neuromuscular Center, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (H.K.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +1-513-558-7498 Abstract: Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Citation: Bazrafshan, S.; Kushlaf, H.; Kakroo, M.; Quinlan, J.; Becker, R.C.; Polyneuropathy, and Valosin-containing Protein-related Myopathy. -
Identification of the Calmodulin-Bindingdomain Of
Proc. Nati. Acad. Sci. USA Vol. 82, pp. 3187-3191, May 1985 Biochemistry Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase (protein phosphorylation/Ca2+-dependent enzyme regulation/synthetic peptide) DONALD K. BLUMENTHAL*t, Koji TAKIO*t, ARTHUR M. EDELMAN*t, HARRY CHARBONNEAUt, KOITI TITANIt, KENNETH A. WALSHt, AND EDWIN G. KREBS*tt *Howard Hughes Medical Institute, tDepartment of Pharmacology, and tDepartment of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195 Contributed by Edwin G. Krebs, January 28, 1985 ABSTRACT In the course of determining the primary modulin-dependent enzyme structure. One of the goals in structure of rabbit skeletal muscle myosin light chain kinase this endeavor was to identify the calmodulin-binding domain (MLCK; ATP:protein phosphotransferase, EC 2.7.1.37) a of this enzyme. The sequence and preliminary characteriza- peptide fragment was obtained that appears to represent the tion of a peptide derived from MLCK that displays the prop- calmodulin-binding domain of this enzyme. Low concentra- erties expected of a calmodulin-binding domain are de- tions of the peptide inhibited calmodulin activation of MLCK scribed in this report. This information should prove useful (Ki 1 nM). The peptide was not associated with a catalytical- in understanding the evolutionary relationships of calmodu- ly active, calmodulin-independent form of MLCK that was ob- lin-dependent enzymes as well as the molecular mechanisms tained by limited proteolysis. The peptide is 27 residues in of calmodulin action. length and represents the carboxyl terminus of MLCK. The sequence of the peptide shows no significant homology with METHODS any known protein sequence. -
Spinal Reflexes
Spinal Reflexes Lu Chen, Ph.D. MCB, UC Berkeley 1 Simple reflexes such as stretch reflex require coordinated contraction and relaxation of different muscle groups Categories of Muscle Based on Direction of Motion Flexors Æ reduce the angle of joints Extensors Æ increase the angle of joints Categories of Muscle Based on Movement Agonist Æmuscle that serves to move the joint in the same direction as the studied muscle Antagonist Æ muscle that moves the joint in the opposite direction 2 1 Muscle Spindles •Small encapsulated sensory receptors that have a Intrafusal muscle spindle-like shape and are located within the fibers fleshy part of the muscle •In parallel with the muscle fibers capsule •Does not contribute to the overall contractile Sensory force endings •Mechanoreceptors are activated by stretch of the central region Afferent axons •Due to stretch of the whole muscle Efferent axons (including intrafusal f.) •Due to contraction of the polar regions of Gamma motor the intrafusal fibers endings 3 Muscle Spindles Organization 2 kinds of intrafusal muscle fibers •Nuclear bag fibers (2-3) •Dynamic •Static •Nuclear chain fibers (~5) •Static 2 types of sensory fibers •Ia (primary) - central region of all intrafusal fibers •II (secondary) - adjacent to the central region of static nuclear bag fibers and nuclear chain fibers Intrafusal fibers stretched Sensory ending stretched, (loading the spindle) increase firing Muscle fibers lengthens Sensory ending stretched, (stretched) increase firing Spindle unloaded, Muscle fiber shortens decrease firing 4 2 Muscle Spindles Organization Gamma motor neurons innervate the intrafusal muscle fibers. Activation of Shortening of the polar regions gamma neurons of the intrafusal fibers Stretches the noncontractile Increase firing of the center regions sensory endings Therefore, the gamma motor neurons provide a mechanism for adjusting the sensitivity of the muscle spindles. -
Sarcoglycan a Mutation in Miniature Dachshund Dogs Causes Limb-Girdle Muscular Dystrophy 2D
UC Davis UC Davis Previously Published Works Title Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D. Permalink https://escholarship.org/uc/item/3r82r6wn Journal Skeletal muscle, 11(1) ISSN 2044-5040 Authors Mickelson, James R Minor, Katie M Guo, Ling T et al. Publication Date 2021-01-07 DOI 10.1186/s13395-020-00257-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mickelson et al. Skeletal Muscle (2021) 11:2 https://doi.org/10.1186/s13395-020-00257-y RESEARCH Open Access Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D James R. Mickelson1* , Katie M. Minor1, Ling T. Guo2, Steven G. Friedenberg3, Jonah N. Cullen3, Amanda Ciavarella4, Lydia E. Hambrook4, Karen M. Brenner5, Sarah E. Helmond6, Stanley L. Marks7 and G. Diane Shelton2 Abstract Background: A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. Methods: Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. Results: Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents.