Mutations in the Human Δ-Sarcoglycan Gene in Familial and Sporadic Dilated Cardiomyopathy

Total Page:16

File Type:pdf, Size:1020Kb

Mutations in the Human Δ-Sarcoglycan Gene in Familial and Sporadic Dilated Cardiomyopathy Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy Shinichi Tsubata, … , Neil E. Bowles, Jeffrey A. Towbin J Clin Invest. 2000;106(5):655-662. https://doi.org/10.1172/JCI9224. Article Dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality. Two genes have been identified for the X- linked forms (dystrophin and tafazzin), whereas three other genes (actin, lamin A/C, and desmin) cause autosomal dominant DCM; seven other loci for autosomal dominant DCM have been mapped but the genes have not been identified. Hypothesizing that DCM is a disease of the cytoskeleton and sarcolemma, we have focused on candidate genes whose products are found in these structures. Here we report the screening of the human δ-sarcoglycan gene, a member of the dystrophin-associated protein complex, by single-stranded DNA conformation polymorphism analysis and by DNA sequencing in patients with DCM. Mutations affecting the secondary structure were identified in one family and two sporadic cases, whereas immunofluorescence analysis of myocardium from one of these patients demonstrated significant reduction in δ-sarcoglycan staining. No skeletal muscle disease occurred in any of these patients. These data suggest that δ-sarcoglycan is a disease-causing gene responsible for familial and idiopathic DCM and lend support to our “final common pathway” hypothesis that DCM is a cytoskeletalopathy. Find the latest version: https://jci.me/9224/pdf Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy Shinichi Tsubata,1,2 Karla R. Bowles,3 Matteo Vatta,2 Carmelann Zintz,2 Jack Titus,4 Linda Muhonen,5 Neil E. Bowles,2 and Jeffrey A. Towbin2,3,6 1Department of Pediatrics, Toyama Medical and Pharmaceutical University, Toyama, Japan 2Department of Pediatrics, Section of Cardiology, and 3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 4The Jesse Edwards Cardiac Registry, Minneapolis, Minnesota, USA 5Department of Pediatrics, Section of Cardiology, Orange County Children’s Hospital, Orange, California, USA 6Department of Cardiovascular Sciences, Baylor College of Medicine, Houston, Texas, USA Address correspondence to: Jeffrey A. Towbin, Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, One Baylor Plaza, Room 333E, Houston, Texas 77030, USA. Phone: (713) 798-7342; Fax: (713) 798-8085; E-mail: [email protected]. Received for publication December 21, 1999, and accepted in revised form July 25, 2000. Dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality. Two genes have been identified for the X-linked forms (dystrophin and tafazzin), whereas three other genes (actin, lamin A/C, and desmin) cause autosomal dominant DCM; seven other loci for autosomal dominant DCM have been mapped but the genes have not been identified. Hypothesizing that DCM is a disease of the cytoskeleton and sarcolemma, we have focused on candidate genes whose products are found in these structures. Here we report the screening of the human δ-sarcoglycan gene, a member of the dystrophin- associated protein complex, by single-stranded DNA conformation polymorphism analysis and by DNA sequencing in patients with DCM. Mutations affecting the secondary structure were identified in one family and two sporadic cases, whereas immunofluorescence analysis of myocardium from one of these patients demonstrated significant reduction in δ-sarcoglycan staining. No skeletal mus- cle disease occurred in any of these patients. These data suggest that δ-sarcoglycan is a disease-causing gene responsible for familial and idiopathic DCM and lend support to our “final common pathway” hypothesis that DCM is a cytoskeletalopathy. J. Clin. Invest. 106:655–662 (2000). Introduction syndrome) (11, 12) and isolated left ventricular non- Dilated cardiomyopathy (DCM) is a primary heart compaction (13, 14), and dystrophin in later-onset X- muscle disease characterized by left ventricular dilation linked cardiomyopathy (XLCM) (15–17). In the more and systolic dysfunction, with secondary diastolic dys- common autosomal dominant DCM, five loci have been function and occasionally associated right ventricular mapped for pure DCM (1q32 [ref. 18], 2q31 [ref. 19], disease (1). This disorder has an incidence of 9q13-q22 [ref. 20], 10q21-q23 [ref. 21], and 15q14 [ref. 3.5–8.5/100,000 population per year and a prevalence 22]), and four loci have been mapped in families with of approximately 36/100,000 population (2, 3), which DCM and associated with conduction disease (1p1-1q21 appears to be on the rise. In addition, DCM is the most [ref. 23], 2q14-q22 [ref. 24], 2q35 [ref. 25], 3p25-p22 [ref. common reason for heart failure and for cardiac trans- 26], and 6q23 [ref. 27]). Thus far, only the gene on chro- plantation in the US, with an estimated cost of $10 bil- mosome 15q14 encoding cardiac actin (22), the gene on lion to $40 billion yearly (4). chromosome 2q35 encoding desmin (25), and the gene The underlying causes of DCM are heterogeneous (5, on chromosome 1p1-1q21 encoding lamin A/C (28) have 6), including myocarditis, drug toxicity (adriamycin), been identified and mutations characterized. and ischemia-induced, metabolic, mitochondrial, and We have proposed a “final common pathway” genetic abnormalities. A genetic cause of DCM is identi- hypothesis (29, 30), which states that hereditary car- fied in approximately 30% of cases (7–9), with autosomal diovascular diseases with similar phenotypes and dominant inheritance being the most common (6). X- genetic heterogeneity will occur due to abnormalities linked, autosomal recessive, and mitochondrial inheri- in genes encoding proteins of similar function or genes tance have also been reported, albeit less frequently (10). encoding proteins participating in a common pathway In the past several years, the genetic basis of DCM has cascade. In the case of DCM, we have proposed that been sought, resulting in the identification of multiple mutations affect elements of the cell cytoarchitecture, genetic loci and five genes causing DCM to date. For X- based around the cytoskeleton (i.e., a cytoskeletalopa- linked DCM, two genes have been identified, including thy) and sarcolemma, but also including elements that tafazzin (G4.5) in cases of the infantile-onset DCM (Barth interact with the cytoskeleton including dystrophin, The Journal of Clinical Investigation | September 2000 | Volume 106 | Number 5 655 the dystrophin-associated glycoprotein complex (DAG; exons containing the coding region. PCR was per- i.e., the sarcoglycans and dystroglycans), and interme- formed in a 10-µL reaction containing 1.5 mM MgCl2, diate filaments. Other final common pathways for spe- 10 pmol of each primer, 0.5 U Taq DNA polymerase cific cardiac phenotypes include the sarcomere in (Life Technologies Inc., Rockville, Maryland, USA), hypertrophic cardiomyopathy (31) and ion channels in using a Stratagene Robocyler (La Jolla, California, cardiac rhythm disorders, such as long QT syndromes USA). After a 5-minute denaturation step at 94°C, 35 and Brugada syndrome (32). rounds of amplification (94°C for 30 seconds, Animal models of cardiomyopathy have also been 54–60°C for 30 seconds, and 72°C for 20 seconds) described, including the BIO14.6 hypertrophic car- were performed. This was followed by a 72°C incuba- diomyopathy and the TO-2 DCM hamsters (33, 34), tion for 2 minutes. which are both due to mutations in the δ-sarcoglycan The exons of δ-sarcoglycan were subcloned into the gene (35–37). These animals also exhibit histological vector pZero (Invitrogen, Carlsbad, California, USA). features of muscular dystrophy (38). Mutations in Clones were identified by whole cell PCR (20 µL reac- this gene in humans cause autosomal recessive limb- tion) and sequenced using an ABI373 (Perkin-Elmer girdle muscular dystrophy, LGMD2F (39), a disorder Applied Biosystems, Foster City, California, USA) and in which skeletal muscle disease can vary from mild Big Dye Terminator chemistry, according to the man- (i.e., ambulatory beyond 15 years, similar to Becker ufacturer’s instructions. muscular dystrophy [BMD]) to severe (i.e., similar to Single-strand conformational polymorphism analysis. Duchenne muscular dystrophy [DMD] with early Mutation analysis was performed using a modifica- requirement of a wheelchair), and cardiac involve- tion of the method of Orita et al. (42). PCR primers ment has been documented in some patients (40). In were designed to amplify across the entire human δ- addition, other LGMD2 disorders (LGMD2C, 2D, 2E) sarcoglycan gene in an exon-by-exon manner using the are caused by sarcoglycan mutations (γ-, α-, and β- primers in Table 1. Radioactive PCR was performed sarcoglycan, respectively), suggesting that some with 100 ng genomic DNA in a 10 µL reaction con- LGMD phenotypes are sarcoglycanopathies. LGMDs taining 1.5 mM MgCl2, 10 pmol of each primer, 0.05 may also include cardiac involvement associated with µCi [α-32P] dCTP (Amersham Life Sciences Inc., skeletal myopathy (41). Arlington Heights, Illinois, USA), 0.5 U Taq DNA poly- For these reasons, we have begun to analyze merase, and 30 rounds of amplification (92°C for 30 patients with DCM for mutations in genes encoding seconds, Y°C for 30 seconds, 72°C for 30 seconds), these proteins. In this report, we describe the identi- where Y represents the annealing temperature shown fication of mutations in the δ-sarcoglycan gene in in Table 1. After PCR amplification, the samples were familial and sporadic cases of pure DCM. This denatured and then electrophoresed for 24 hours in a extends the spectrum of phenotypes seen with sarco- denaturing 10% polyacrylamide:bisacrylamide (50:1; glycanopathies, now adding pure DCM to the poten- Bio-Rad Laboratories Inc., Hercules, California, USA) tial clinical presentation. gel with and without 12% glycerol, at 8 W in a 4°C cold room. Bands were visualized by exposure of the dried Methods gels to Kodak BioMax MS-1 film (Eastman Kodak Co., Patient evaluation. All patients were evaluated by physi- Rochester, New York, USA).
Recommended publications
  • Γ-Sarcoglycan Deficiency Increases Cell Contractility, Apoptosis And
    Research Article 1405 γ-Sarcoglycan deficiency increases cell contractility, apoptosis and MAPK pathway activation but does not affect adhesion Maureen A. Griffin1,2, Huisheng Feng1,3, Manorama Tewari1,2, Pedro Acosta1,3, Masataka Kawana1,3, H. Lee Sweeney1,3,4 and Dennis E. Discher1,2,4,* 1Pennsylvania Muscle Institute, University of Pennsylvania Medical Center, D-700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6083, USA 2Department of Chemical and Biomolecular Engineering, Towne Building, 220 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104-6393, USA 3Department of Physiology, University of Pennsylvania Medical Center, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA 4Graduate Group in Cell and Molecular Biology, University of Pennsylvania Medical Center, 3620 Hamilton Walk, Philadelphia, PA 19104-6058, USA *Author for correspondence (e-mail: [email protected]) Accepted 10 January 2005 Journal of Cell Science 118, 1405-1416 Published by The Company of Biologists 2005 doi:10.1242/jcs.01717 Summary The functions of γ-sarcoglycan (γSG) in normal myotubes striations were more prominent in γSG-deficient myotubes are largely unknown, however γSG is known to assemble than in normal cells. An initial phosphoscreen of more than into a key membrane complex with dystroglycan and its 12 signaling proteins revealed a number of differences deficiency is one known cause of limb-girdle muscular between normal and γSG–/– muscle, both before and after dystrophy. Previous findings of apoptosis from γSG- stretching. MAPK-pathway proteins displayed the largest deficient mice are extended here to cell culture where changes in activation, although significant phosphorylation apoptosis is seen to increase more than tenfold in γSG- also appeared for other proteins linked to hypertension.
    [Show full text]
  • Further Evidence for the Organisation of the Four Sarcoglycans Proteins Within the Dystrophin–Glycoprotein Complex
    European Journal of Human Genetics (1999) 7, 251–254 © 1999 Stockton Press All rights reserved 1018–4813/99 $12.00 t http://www.stockton-press.co.uk/ejhg SHORT REPORT Further evidence for the organisation of the four sarcoglycans proteins within the dystrophin–glycoprotein complex M Vainzof1,2, ES Moreira2, G Ferraz3, MR Passos-Bueno2, SK Marie1 and M Zatz2 1Departamento de Neurologia, FMUSP, S˜ao Paulo 2Departamento de Biologia, IB-USP, S˜ao Paulo 3Departamento de Gen´etica, UFPE, Recife, PE, Brazil Based on the pattern of distribution of the SG proteins in patients with LGMD2C and 2D, and on the observed decreased abundance of dystrophin through WB in some sarcoglycans (SG) patients, we have recently suggested that α, â and δ subunits of sarcoglycan complex might be more closely associated and that γ-SG might interact more directly with dystrophin. Two additional SG patients here reported give further support to these suggestions: an LGMD2F patient showed patchy labelling for γ-SG, despite the lack of staining of the other three SG proteins; an LGMD2C boy showed deficiency in dystrophin by means of WB and IF, comparable with an DMD manifesting carrier. These two patients represent further evidence of a closer relation of α, â and δ-SG than of γ-SG and of the possible association of γ-SG with dystrophin. In addition the LGMD2C patient illustrates the potential risk of misdiagnosis using only dystrophin analysis, in cases with no positive family history, or when DNA analysis is not informative. Keywords: sarcoglycans; muscular dystrophy;
    [Show full text]
  • Anti-SGCG / Gamma Sarcoglycan Antibody (ARG41710)
    Product datasheet [email protected] ARG41710 Package: 100 μl anti-SGCG / gamma Sarcoglycan antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes SGCG / gamma Sarcoglycan Tested Reactivity Hu Tested Application IHC-P, IP, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name SGCG / gamma Sarcoglycan Antigen Species Human Immunogen Synthetic peptide of Human SGCG / gamma Sarcoglycan Conjugation Un-conjugated Alternate Names 35DAG; DMDA1; TYPE; SCG3; DMDA; Gamma-sarcoglycan; DAGA4; 35 kDa dystrophin-associated glycoprotein; A4; SCARMD2; Gamma-SG; LGMD2C; MAM Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 IP 1:50 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 32 kDa Observed Size ~ 32 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol SGCG Gene Full Name sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) Background This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with dystrophin.
    [Show full text]
  • Big, Bad Hearts: from Flies to Man
    COMMENTARY Big, bad hearts: From flies to man Fabrizio C. Serluca and Mark C. Fishman* Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139 enetic screens have revealed sponsible gene is unknown, so it would important molecular pathways related essential genes that guide be very useful to have a compendium of to contractility are shared and, as Wolf metazoan complexity, from candidate genes. That is what a model et al. (4) demonstrate, that mutations of fates of individual cells, to system might offer. sarcomeric proteins do lead to dimin- Gpatterning of cell arrays, to their assem- ished contractile function and cardiac bly into organs (1–3). Genetic Screens for Physiology? enlargement. Now the Ur-genetic organism Dro- One vertebrate species, the zebrafish, Of course, the physiology of the hu- sophila is making a play to provide has already been subject to screens for man heart differs in many regards genes for a next wave of biology: heart mutations, including those that from that of Drosophila. The Drosoph- integrative physiology. How do organs interfere with contractility (3). One ila heart is a tube, lacking endothe- move, beat, digest, secrete, behave, and advantage of the zebrafish embryo is lium, composed of two thin layers of interact in manners adjusted to changing its transparency, so contractility can be muscle oriented in the circumferential needs of an organism? How can such monitored visually. In that species, mu- and longitudinal directions (11). Con- features be monitored without perturb- tations in sarcomeric proteins and tractions squeeze along the tube and ing the very processes under study? novel signaling pathways have been drive perilymph in alternating direc- In a recent issue of PNAS, Wolf et al.
    [Show full text]
  • Genetic Modifiers of Hereditary Neuromuscular Disorders
    cells Article Genetic Modifiers of Hereditary Neuromuscular Disorders and Cardiomyopathy Sholeh Bazrafshan 1, Hani Kushlaf 2 , Mashhood Kakroo 1, John Quinlan 2, Richard C. Becker 1 and Sakthivel Sadayappan 1,* 1 Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (S.B.); [email protected] (M.K.); [email protected] (R.C.B.) 2 Department of Neurology and Rehabilitation Medicine, Neuromuscular Center, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (H.K.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +1-513-558-7498 Abstract: Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Citation: Bazrafshan, S.; Kushlaf, H.; Kakroo, M.; Quinlan, J.; Becker, R.C.; Polyneuropathy, and Valosin-containing Protein-related Myopathy.
    [Show full text]
  • Sarcoglycan a Mutation in Miniature Dachshund Dogs Causes Limb-Girdle Muscular Dystrophy 2D
    UC Davis UC Davis Previously Published Works Title Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D. Permalink https://escholarship.org/uc/item/3r82r6wn Journal Skeletal muscle, 11(1) ISSN 2044-5040 Authors Mickelson, James R Minor, Katie M Guo, Ling T et al. Publication Date 2021-01-07 DOI 10.1186/s13395-020-00257-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mickelson et al. Skeletal Muscle (2021) 11:2 https://doi.org/10.1186/s13395-020-00257-y RESEARCH Open Access Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D James R. Mickelson1* , Katie M. Minor1, Ling T. Guo2, Steven G. Friedenberg3, Jonah N. Cullen3, Amanda Ciavarella4, Lydia E. Hambrook4, Karen M. Brenner5, Sarah E. Helmond6, Stanley L. Marks7 and G. Diane Shelton2 Abstract Background: A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. Methods: Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. Results: Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents.
    [Show full text]
  • Validación Y Estudio De La Implicación De Los Genes Adrbk2, Adrb1, Adra2b, Axin 2, Atp6v1c1 Y Atp6v0e En El Carcinoma Oral De
    FACULTADE DE MEDICINA E ODONTOLOXÍA Departamento de Estomatoloxía VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL TESIS DOCTORAL EVA MARÍA OTERO REY Santiago de Compostela, enero de 2006 FACULTAD DE MEDICINA Y ODONTOLOGÍA DEPARTAMENTO DE ESTOMATOLOGÍA VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL Autora: EVA MARÍA OTERO REY Santiago de Compostela, 20 de Enero de 2006. D. ABEL GARCÍA GARCÍA, Profesor Titular de Cirugía Oral y Maxilofacial de la Facultad de Medicina y Odontología de la Universidad de Santiago de Compostela; D. FRANCISCO BARROS ANGUEIRA, Doctor en Biología y Jefe de Laboratorio de la Fundación Pública Galega de Medicina Xenómica del Sergas; y D. JOSÉ MANUEL SOMOZA MARTÍN, Doctor en Odontología de la Universidad de Santiago de Compostela, CERTIFICAN: Que la presente Tesis Doctoral titulada “VALIDACIÓN Y ESTUDIO DE LA IMPLICACIÓN DE LOS GENES ADRBK2, ADRB1, ADRA2B, AXIN 2, ATP6V1C1 Y ATP6V0E EN EL CARCINOMA ORAL DE CÉLULAS ESCAMOSAS MEDIANTE PCR CUANTITATIVA EN TIEMPO REAL”, ha sido elaborada por Dña. EVA MARÍA OTERO REY bajo nuestra dirección, y hallándose concluida, autorizamos su presentación a fin de que pueda ser defendida ante el Tribunal correspondiente. Y para que así conste, se expide la presente certificación en Santiago de Compostela, a 20 de Enero de 2006. Prof. Dr. D. Abel García García Dr. D. Francisco Barros Angueira Dr.
    [Show full text]
  • Pigs with δ-Sarcoglycan Deficiency Exhibit Traits of Genetic
    Laboratory Investigation (2020) 100:887–899 https://doi.org/10.1038/s41374-020-0406-7 TECHNICAL REPORT Pigs with δ-sarcoglycan deficiency exhibit traits of genetic cardiomyopathy 1,2 1 1 3 3 Hitomi Matsunari ● Michiyo Honda ● Masahito Watanabe ● Satsuki Fukushima ● Kouta Suzuki ● 3 2 1 1 2 Shigeru Miyagawa ● Kazuaki Nakano ● Kazuhiro Umeyama ● Ayuko Uchikura ● Kazutoshi Okamoto ● 1 4 3 1,2 Masaki Nagaya ● Teruhiko Toyo-oka ● Yoshiki Sawa ● Hiroshi Nagashima Received: 14 December 2019 / Revised: 19 January 2020 / Accepted: 19 January 2020 / Published online: 14 February 2020 © The Author(s) 2020. This article is published with open access Abstract Genetic cardiomyopathy is a group of intractable cardiovascular disorders involving heterogeneous genetic contribution. This heterogeneity has hindered the development of life-saving therapies for this serious disease. Genetic mutations in dystrophin and its associated glycoproteins cause cardiomuscular dysfunction. Large animal models incorporating these genetic defects are crucial for developing effective medical treatments, such as tissue regeneration and gene therapy. In the present study, we knocked out the δ-sarcoglycan (δ-SG) gene (SGCD) in domestic pig by using a combination of efficient de δ 1234567890();,: 1234567890();,: novo gene editing and somatic cell nuclear transfer. Loss of -SG expression in the SGCD knockout pigs caused a concomitant reduction in the levels of α-, β-, and γ-SG in the cardiac and skeletal sarcolemma, resulting in systolic dysfunction, myocardial tissue degeneration, and sudden death. These animals exhibited symptoms resembling human genetic cardiomyopathy and are thus promising for use in preclinical studies of next-generation therapies. Introduction dilated cardiomyopathy (DCM), arrhythmogenic right ven- tricular cardiomyopathy, left ventricular noncompaction, and Idiopathic cardiomyopathy is a serious cardiac disorder restrictive cardiomyopathy [1, 3].
    [Show full text]
  • Muscular Dystrophies Involving the Dystrophin–Glycoprotein Complex: an Overview of Current Mouse Models Madeleine Durbeej and Kevin P Campbell*
    349 Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models Madeleine Durbeej and Kevin P Campbell* The dystrophin–glycoprotein complex (DGC) is a multisubunit dystrophies are a heterogeneous group of disorders. complex that connects the cytoskeleton of a muscle fiber to its Patients with DMD have a childhood onset phenotype and surrounding extracellular matrix. Mutations in the DGC disrupt die by their early twenties as a result of either respiratory the complex and lead to muscular dystrophy. There are a few or cardiac failure, whereas patients with BMD have naturally occurring animal models of DGC-associated moderate weakness in adulthood and may have normal life muscular dystrophy (e.g. the dystrophin-deficient mdx mouse, spans. The limb–girdle muscular dystrophies have a dystrophic golden retriever dog, HFMD cat and the highly variable onset and progression, but the unifying δ-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster) theme among the limb–girdle muscular dystrophies is the that share common genetic protein abnormalities similar to initial involvement of the shoulder and pelvic girdle those of the human disease. However, the naturally occurring muscles. Moreover, muscular dystrophies may or may not animal models only partially resemble human disease. In be associated with cardiomyopathy [1–4]. addition, no naturally occurring mouse models associated with loss of other DGC components are available. This has Combined positional cloning and candidate gene encouraged the generation of genetically engineered mouse approaches have been used to identify an increasing number models for DGC-linked muscular dystrophy. Not only have of genes that are mutated in various forms of muscular analyses of these mice led to a significant improvement in our dystrophy.
    [Show full text]
  • Dynamic Changes in the Subcellular Localization of Drosophila Β-Sarcoglycan During the Cell Cycle
    CELL STRUCTURE AND FUNCTION 31: 173–180 (2006) © 2006 by Japan Society for Cell Biology Dynamic Changes in the Subcellular Localization of Drosophila β-Sarcoglycan during the Cell Cycle Reina Hashimoto1 and Masamitsu Yamaguchi1∗ 1Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan ABSTRACT. One of the proposed roles of sarcoglycan is to stabilize dystrophin glycoprotein complexes in muscle sarcolemma. Involvement in signal transduction has also been proposed and abnormalities in some sarcoglycan genes are known to be responsible for muscular dystrophy. While characterization of sarcoglycans in muscle has been performed, little is known about its functions in the non-muscle tissues in which mammalian sarcoglycans are expressed. Here, we investigated temporal and spatial expression patterns of Drosophila β-sarcoglycan (dScgβ) during development by immunohistochemistry. In addition to almost ubiquitous expression in various tissues and organs, as seen for its mammalian counterpart, anti-dScgβ staining data of embryos, eye imaginal discs, and salivary glands demonstrated cytoplasmic localization during S phase in addition to plasma membrane staining. Furthermore we found that subcellular localization of dScgβ dramatically changes during mitosis through possible association with tubulin. These observations point to a complex role of sarcoglycans in non-mus- cle tissues. Key words: sarcoglycan/Drosophila/tubulin/cell cycle Introduction plex is to stabilize DGC itself by interacting with dystro- phin, dystroglycan, and other constitutive proteins (Chen et β-sarcoglycan is a member of the sarcoglycan complex. al., 2006; Crosbie et al., 1999; Durbeej et al., 2000; Straub This forms part of the dystrophin glycoprotein complex et al., 1998).
    [Show full text]
  • Factors Regulating the Function and Assembly of the Sarcoglycan Complex in Brain
    Factors regulating the function and assembly of the sarcoglycan complex in brain A thesis submitted for the Degree of Doctor of Philosophy at Cardiff University School of Medicine Francesca Carlisle 2016 Supervised by Professor Derek Blake and Professor Anthony Isles Thesis summary Myoclonus dystonia (MD) is a neurogenic movement disorder that can be caused by mutations in the SGCE gene encoding ε-sarcoglycan. ε-sarcoglycan belongs to the sarcoglycan family of cell surface-localised, single-pass transmembrane proteins originally identified in muscle where they form a heterotetrameric subcomplex of the dystrophin- associated glycoprotein complex (DGC). Mutations in the SGCA, SGCB, SGCG and SGCD genes encoding α-, β-, γ- and δ-sarcoglycan cause limb-girdle muscular dystrophy (LGMD). There is no phenotypic overlap between MD and LGMD. LGMD-associated sarcoglycan mutations impair trafficking of the entire sarcoglycan complex to the cell surface and destabilise the DGC in muscle, while MD-associated mutations typically result in loss of ε- sarcoglycan from the cell surface. This suggests cell surface ε-sarcoglycan but not other sarcoglycans is required for normal brain function. To gain insight into ε-sarcoglycan’s function(s) in the brain, immunoaffinity purification was used to identify ε-sarcoglycan- interacting proteins. Ubiquitous and brain-specific ε-sarcoglycan isoforms co-purified with three other sarcoglycans including ζ-sarcoglycan (encoded by SGCZ) from the brain. Incorporation of an LGMD-associated β-sarcoglycan mutant into the brain sarcoglycan complex impaired the formation of the βδ-sarcoglycan core but failed to abrogate the association and trafficking of ε- and ζ-sarcoglycan in heterologous cells. Both ε-sarcoglycan isoforms also co-purified with β-dystroglycan, indicating inclusion in DGC-like complexes.
    [Show full text]
  • Childhood Onset Limb-Girdle Muscular Dystrophies in the Aegean Part of Turkey
    Acta Myologica • 2018; XXXVII: p. 210-220 Childhood onset limb-girdle muscular dystrophies in the Aegean part of Turkey Uluç Yi̇ş1, Gülden Dini̇ ż 2, Filiz Hazan3, Hülya Sevcan Dai̇magüler4 5, Bahar Toklu Baysal6, Figen Baydan2, Gülçin Akinci6, Aycan Ünalp6, Gül Aktan7, Erhan Bayram1, Semra Hiz1, Cem Paketçi̇1, Derya Okur1, Erdener Özer8, Ayça Ersen Danyeli̇8, Muzaffer Polat9, Gökhan Uyanik10 11 and Sebahattin Çirak4 5 ¹ Dokuz Eylül University, School of Medicine, Department of Pediatrics, Division of Child Neurology, İzmir, Turkey; ² Neuromuscular Disease Center, Tepecik Research Hospital, İzmir, Turkey; ³ Dr Behçet Uz Children’s Research Hospital, Department of Medical Genetics, İzmir, Turkey; 4 University Hospital Cologne, Department of Pediatrics, Cologne, Germany; 5 Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; 6 Dr Behçet Uz Children’s Research Hospital, Department of Pediatric Neurology, İzmir, Turkey; 7 Ege University, School of Medicine, Department of Pediatrics, Division of Child Neurology, İzmir, Turkey; 8 Dokuz Eylül University, School of Medicine, Department of Pathology, İzmir, Turkey; 9 Celal Bayar University, School of Medicine, Department of Pediatrics, Division of Child Neurology, Manisa, Turkey; 10 Center for Medical Genetics, Hanusch Hospital, Vienna, Austria; 11 Medical Faculty, Sigmund Freud Private University, Vienna, Austria The aim of this study is to analyze the epidemiology of the ders. They are inherited in an autosomal recessive or clinical and genetic features of childhood-onset limb-girdle dominant manner. Thirty-three recessively and domi- muscular dystrophies (LGMD) in the Aegean part of Turkey. In total fifty-six pediatric cases with LGMD followed in four nantly inherited forms have currently been identified.
    [Show full text]