WO 2015/028324 A2 5 March 2015 (05.03.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/028324 A2 5 March 2015 (05.03.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/028324 A2 5 March 2015 (05.03.2015) P O P C T (51) International Patent Classification: Copenhagen (DK). MEYER, Jean Philippe; C/O Evolva C12N 9/10 (2006.01) SA, Duggingerstrasse 23, CH-4153 Reinach (CH). VAZQUEZ, Carlos Casado; C/O Evolva SA, Dugginger (21) International Application Number: strasse 23, CH-41 53 Reinach (CH). PCT/EP2014/067520 (74) Agent: SMAGGASGALE, Gillian, Helen; 55 Drury (22) International Filing Date: Lane, London WC2B 5SQ (GB). 15 August 2014 (15.08.2014) (81) Designated States (unless otherwise indicated, for every English (25) Filing Language: kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 61/872,452 30 August 2013 (30.08.2013) US HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/873,348 3 September 2013 (03.09.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/917,928 18 December 201 3 (18. 12.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/923,486 3 January 2014 (03.01 .2014) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (71) Applicant: EVOLVA SA [CH/CH]; Duggingerstrasse 23, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, CH-4153 Reinach (CH). TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (72) Inventors: BAERENDS, Richard Jan Steven; C/O Evolva SA, Duggingerstrasse 23, CH-4153 Reinach (CH). (84) Designated States (unless otherwise indicated, for every SIMON, Ernesto; 2nd Floor, Svaertegade 7, DK-1 118 kind of regional protection available): ARIPO (BW, GH, [Continued on nextpage] (54) Title: A METHOD FOR PRODUCING MODIFIED RESVERATROL (57) Abstract: Methods for producing glycosylated and Figure 1 methylated resveratrol in a genetically engineered cell, by bioconversion,and in vitro are disclosed herein. OH PAL L-phenylalanine Trans-cinnamic acid C4H < © o o w o 2015/028324 A2 1II II II 11 I Illlll 111 III III Hill lllll II 11 11 llll llll 11llll GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Published: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, — without international search report and to be republished TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, upon receipt of that report (Rule 48.2(g)) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — with sequence listing part of description (Rule 5.2(a)) SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, — with information concerning incorporation by reference GW, KM, ML, MR, NE, SN, TD, TG). of missing parts and/or elements (Rule 20.6) A METHOD FOR PRODUCING MODIFIED RESVERATROL BACKGROUND OF THE INVENTION Field of the Invention [0001] The invention disclosed herein relates generally to the fields of genetic engineering. Particularly, the invention disclosed herein provides purified preparations of glycosylated or methylated resveratrol and methods for producing and recovering glycosylated or methylated resveratrol from a genetically modified cell. More particularly, the invention disclosed herein provides glycosylated resveratrol preparations having improved solubility for use in foodstuffs and other commercial products and methods for using glycosylated resveratrol of the invention in producing said products. Description of Related Art [0002] Resveratrol (3,5,4'-trihydroxy-stilbene) is a phytophenol belonging to the group of stilbene phytoalexins, which are low-molecular-mass secondary metabolites that constitute the active defense mechanism in plants in response to fungal and other infections or other stress- related events (see, e.g., U.S. 2008/0286844). In addition to its antifungal properties, resveratrol has been recognized for its cardioprotective and cancer chemopreventive activities; it acts as a phytoestrogen, an inhibitor of platelet aggregation (Kopp et al., 1998, European J Endocrinol. 138: 619-620; Gehm et al., 1997, Proc Natl Acad Sci USA 94: 14138-14143; Lobo et al., 1995, Am. J. Obstet. Gynecol. 173: 982-989; Gao & Ming, 2010, Mini Rev Med Chem 10(6):550-67), and an antioxidant (Tang et al., 1997, Science 275: 218-220; Huang, 1997, Food Sci. 24: 713-727). [0003] Plants, the skin of red grapes, and other fruits produce resveratrol naturally. Certain glycosylated resveratrol species or resveratrol glycosides are also found in nature, in plants (mostly in grapevine plants, such as Vitis vinifera and Vitis pseudoreticulata, and mulberry plants). Methylated resveratrol species are also found in nature. For example, pterostilbene, a stilbenoid found in blueberries and grapes, is a double-methylated version of resveratrol that exhibits a higher bioavailability and is more resistant to degradation and elimination (Kapetanovic et al., 201 1, Cancer Chemother Pharmacol 68(3):593-60^. [0004] Known naturally occurring resveratrol glycosides include: c/s/frans-resveratrol-3- Ο-β- glucoside; resveratrol 3-0 - -D-glucopyranoside; piceid (Kirino et al., 2012, J Nutr Sci Vitaminol 58: 278-286; Larronde et al., 2005, Planta Med. 71: 888-890; Zhou et al., 2001 , Planta Med. 67: 158-61 ; Orsini et ai, 1997, J. Nat. Prod. 60: 1082-1087; Waffo-Teguo et ai, 1996, Phytochemistry 42: 1591-1593), c/s/frans-resveratrol-4'-0-3-glucoside; resveratroloside (Kirino et ai, 2012, J Nutr Sci Vitaminol 58: 278-286; Larronde et ai, 2005, Planta Med. 7 1: 888-890; Waffo-Teguo ef a/., 1998, J af. Prod. 61: 655-657), c/'s/frans-resveratrol-3,4'-di-0-3-glucoside; Mulberroside E (Larronde et ai, 2005, Planta Med. 7 1: 888-890; Decendit ef a/., 2002, Phytochemistry 60: 795-798; Zhou ef a/., 2001 , P/anfa /Wed. 67: 158-61 ; Hano ef ai, 1997, Ce/ . /Wo/. Z-/fe Sci. 53 : 237-241), c/'s/frans-resveratrol-3,5-di-0-3-glucoside (Larronde ef a/., 2005, Planta Med. 7 1: 888-890;); and c/s/frans-resveratrol-3,5,4'-tri-0- β-glucoside (Larronde ef a/., 2005, P/anfa Med. 71: 888-890). [0005] Resveratrol glycosides that have been produced in vitro or /'n /Vo include: trans- resveratrol-3-0-3-glucoside; piceid (Zhou ef ai, 2013, J . A/af. Prod. 76: 279-286; Hansen ef ai 2009, Phytochemistry 70: 473-482; Weis ef a/., 2006, nge . Chem. Int. Ed. 45: 3534-3538; Regev-Shoshani ef a/., 2003, Biochem J. 374: 157-163; Becker ef ai, 2003, FE/WS Yeasf Res. 4 : 79-85), frans-resveratrol-4'-0-3-glucoside; resveratroloside (Zhou ef a/., 2013, J A/af. Prod. 76: 279-286; Hansen ef ai, 2009, Phytochemistry 70: 473-482; Weis ef a/., 2006, nge . Chem. Int. Ed. 45: 3534-3538; Regev-Shoshani ef a/., 2003, Biochem J. 374: 157-163), frans- resveratrol-3,4'-di-0-3-glucoside; Mulberroside E (Zhou et ai, 2013, J. Nat. Prod. 76: 279-286), frans-glucosyl-a-(1-4)-piceid (Hyunsu ef a/., 2012, J. Microbiol. Biotechnol. 22: 1698-1704), frans-a-D-maltosyl-(1-4)-piceid (Park et al., 2012, J Agric. Food Chem. 60: 8183-8189). [0006] Generally, resveratrol is produced in plants and yeast through the phenylpropanoid pathway as illustrated by the reactions shown in Figures 1 and 2 and as described in U.S. 2008/0286844, which is incorporated by reference in its entirety herein. [0007] Present production processes rely mostly upon extraction of resveratrol, either from the skin of grape berries or from the plant, Fallopia japonica, known as "Japanese knotweed." Current extraction and purification methods use organic solvents to extract resveratrol and separate it from the biomass and/or cell debris. Examples of these solvents include, among others, ethanol, methanol, ethyl acetate, and petroleum ether. This is a labor-intensive process and generates low yields. Moreover, since resveratrol or its mono-glucosides (e.g., piceid and resveratroloside) have low water-solubility (see, e.g., Gao & Ming, 2010, Mini Rev Med Chem 10(6):550-67), it forms aggregates/crystals upon addition to water and/or formation by a recombinant resveratrol producing- and secreting-microorganism. Separation of resveratrol aggregates/crystals from recombinant or other cells (such as microorganisms or plant cells) by centrifugation is inefficient. [0008] In yeast, the starting metabolites are malonyl-CoA and phenylalanine or tyrosine (aromatic amino acids). The amino acid L-phenylalanine is converted into trans-cinnamic acid through non-oxidative deamination by L-phenylalanine ammonia lyase (PAL). Next, trans- cinnamic acid is hydroxylated at the para-position to 4-coumaric acid (4-hydroxycinnamic acid) by cinnamate-4-hydroxylase (C4H), a cytochrome P450 monooxygenase enzyme, in conjunction with NADPH:cytochrome P450 reductase (CPR). Alternatively, the amino acid L- tyrosine is converted into 4-coumaric acid by tyrosine ammonia lyase (TAL). The 4-coumaric acid from either alternative pathway is subsequently activated to 4-coumaroyl-CoA by the action of 4-coumarate-CoA ligase (4CL). Finally, stilbene synthase (STS), also known as resveratrol synthase (RS), catalyzes condensation of a phenylpropane unit of 4-coumaroyl-CoA with malonyl-CoA resulting in formation of resveratrol. [0009] Previously, a yeast strain was disclosed that could produce resveratrol from 4- coumaric acid that is found in small quantities in grape must (Becker et al., 2003, FEMS Yeast Res. 4 : 79-85). Production of 4-coumaroyl-CoA, and concomitantly resveratrol, in laboratory strains of Saccharomyces cerevisiae, has been achieved by co-expressing a heterologous coenzyme-A ligase gene from hybrid poplar, together with the grapevine resveratrol synthase gene (vstl) (Becker et al., 2003, FEMS Yeast Res.
Recommended publications
  • Stilbenes: Chemistry and Pharmacological Properties
    1 Journal of Applied Pharmaceutical Research 2015, 3(4): 01-07 JOURNAL OF APPLIED PHARMACEUTICAL RESEARCH ISSN No. 2348 – 0335 www.japtronline.com STILBENES: CHEMISTRY AND PHARMACOLOGICAL PROPERTIES Chetana Roat*, Meenu Saraf Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India Article Information ABSTRACT: Medicinal plants are the most important source of life saving drugs for the Received: 21st September 2015 majority of the Worlds’ population. The compounds which synthesized in the plant from the Revised: 15th October 2015 secondary metabolisms are called secondary metabolites; exhibit a wide array of biological and Accepted: 29th October 2015 pharmacological properties. Stilbenes a small class of polyphenols, have recently gained the focus of a number of studies in medicine, chemistry as well as have emerged as promising Keywords molecules that potentially affect human health. Stilbenes are relatively simple compounds Stilbene; Chemistry; synthesized by plants and deriving from the phenyalanine/ polymalonate route, the last and key Structures; Biosynthesis pathway; enzyme of this pathway being stilbene synthase. Here, we review the biological significance of Pharmacological properties stilbenes in plants together with their biosynthesis pathway, its chemistry and its pharmacological significances. INTRODUCTION quantities are present in white and rosé wines, i.e. about a tenth Plants are source of several drugs of natural origin and hence of those of red wines. Among these phenolic compounds, are termed as the medicinal plants. These drugs are various trans-resveratrol, belonging to the stilbene family, is a major types of secondary metabolites produced by plants; several of active ingredient which can prevent or slow the progression of them are very important drugs.
    [Show full text]
  • Wo 2009/118338 A3
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 October 2009 (01.10.2009) WO 2009/118338 A3 (51) International Patent Classification: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, A61K 31/085 (2006.01) A61K 31/7004 (2006.01) EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 31/09 (2006.01) A61K 31/7048 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, A61K 31/353 (2006.01) A61P 25/28 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (21) International Application Number: NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, PCT/EP2009/0535 19 SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, (22) International Filing Date: UG, US, UZ, VC, VN, ZA, ZM, ZW. 25 March 2009 (25.03.2009) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (26) Publication Language: English ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (30) Priority Data: TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, 08300163.6 27 March 2008 (27.03.2008) EP ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), (71) Applicant (for all designated States except US): IN- OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, SERM (Institut National de Ia Sante et de Ia Recherche MR, NE, SN, TD, TG).
    [Show full text]
  • Rational Design of Resveratrol O-Methyltransferase for the Production of Pinostilbene
    International Journal of Molecular Sciences Article Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Daniela P. Herrera 1 , Andrea M. Chánique 1,2 , Ascensión Martínez-Márquez 3, Roque Bru-Martínez 3 , Robert Kourist 2 , Loreto P. Parra 4,* and Andreas Schüller 4,5,* 1 Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile; [email protected] (D.P.H.); [email protected] (A.M.C.) 2 Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; [email protected] 3 Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, 03690 Alicante, Spain; [email protected] (A.M.-M.); [email protected] (R.B.-M.) 4 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile 5 Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile * Correspondence: [email protected] (L.P.P.); [email protected] (A.S.) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that Citation: Herrera, D.P.; Chánique, monomethylate resveratrol to yield pinostilbene have been described so far.
    [Show full text]
  • Desoxyrhapontigenin Inhibits RANKL‑Induced Osteoclast Formation and Prevents Inflammation‑Mediated Bone Loss
    INTERNATIONAL JOURNAL OF MOleCular meDICine 42: 569-578, 2018 Desoxyrhapontigenin inhibits RANKL‑induced osteoclast formation and prevents inflammation‑mediated bone loss PHUONG THAO TRAN1, DONG-HWA PARK2, OKHWA KIM1, SEUNG-HAE KWON3, BYUNG-SUN MIN2 and JEONG-HYUNG LEE1 1Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341; 2College of Pharmacy, Catholic University of Daegu, Hayang, Gyeongbuk 38430; 3Division of Bio-Imaging, Korea Basic Science Institute Chuncheon Center, Chuncheon, Gangwon-Do 24341, Republic of Korea Received November 6, 2017; Accepted March 15, 2018 DOI: 10.3892/ijmm.2018.3627 Abstract. Desoxyrhapontigenin (DRG), a stilbene compound mouse model. At the molecular level, DRG inhibited the from Rheum undulatum, has been found to exhibit various RANKL-induced activation of extracellular signal-regulated pharmacological activities, however, its impact on osteoclast kinase, the expression of c-Fos, and the induction of NFATc1, formation has not been investigated. The present study inves- a crucial transcription factor for osteoclast formation. DRG tigated the effect of DRG on receptor activator of nuclear decreased the expression levels of osteoclast marker genes, factor-κB ligand (RANKL)-induced osteoclast differen- including matrix metalloproteinase-9, tartrate-resistant acid tiation in mouse bone marrow macrophages (BMMs) and phosphatase and cathepsin K. In conclusion, these findings inflammation‑induced bone loss in vivo. BMMs or RAW264.7 suggested that DRG inhibited the differentiation of BMMs cells were treated with DRG, followed by an evaluation of into mature osteoclasts by suppressing the RANKL-induced cell viability, RANKL-induced osteoclast differentiation, activator protein-1 and NFATc1 signaling pathways, and actin-ring formation and resorption pits activity.
    [Show full text]
  • Applications of Mass Spectrometry in Natural Product Drug Discovery for Malaria: Targeting Plasmodium Falciparum Thioredoxin Reductase
    Applications of mass spectrometry in natural product drug discovery for malaria: Targeting Plasmodium falciparum thioredoxin reductase by Ranjith K. Munigunti A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 5, 2013 Keywords: Chromatography, mass spectrometry, malaria, Plasmodium falciparum, thioredoxin reductase, thioredoxin Copyright 2013 by Ranjith K. Munigunti Approved by Angela I. Calderón, Chair, Assistant Professor of Pharmacal Sciences C. Randall Clark, Professor of Pharmacal Sciences Jack DeRuiter, Professor of Pharmacal Sciences Forrest Smith, Associate Professor of Pharmacal Sciences Orlando Acevedo, Associate Professor of Chemistry and Biochemistry Abstract Malaria is considered to be the dominant cause of death in low income countries especially in Africa. Malaria caused by Plasmodium falciparum is a most lethal form of the disease because of its rapid spread and the development of drug resistance. The main problem in the treatment of malaria is the emergence of drug resistant malaria parasites. Over the years/decades, natural products have been used for the treatment or prevention of number of diseases. They can serve as compounds of interest both in their natural form and as templates for synthetic modification. Nature has provided a wide variety of compounds that inspired the development of potential therapeutics such as quinine, artemisinin and lapachol as antimalarial agents. As the resistance to known antimalarials is increasing, there is a need to expand the antimalarial drug discovery efforts for new classes of molecules to combat malaria. This research work focuses on the applications of ultrafiltration, mass spectrometry and molecular modeling based approaches to identify inhibitors of Plasmodium falciparum thioredoxin reductase (PfTrxR), our main target and Plasmodium falciparum glutathione reductase (PfGR) as an alternative target for malaria drug discovery.
    [Show full text]
  • WO 2011/123236 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 6 October 2011 (06.10.2011) WO 2011/123236 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01N 43/04 (2006.01) A61K 31/70 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/028305 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 14 March 201 1 (14.03.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/320,1 36 1 April 2010 (01 .04.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BIO- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, SPHERICS, INC. [US/US]; 6430 Rockledge Drive, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, #503, Westmoreland Building, Bethesda, Maryland TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 2081 7 (US).
    [Show full text]
  • Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis Vinifera L
    Molecules 2015, 20, 6093-6112; doi:10.3390/molecules20046093 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L. Ivo Soural 1,*, Naděžda Vrchotová 2, Jan Tříska 2, Josef Balík 1, Štěpán Horník 3, Petra Cuřínová 3 and Jan Sýkora 3 1 Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Valtická 337, Lednice 69144, Czech Republic; E-Mail: [email protected] 2 Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i., Branišovská 31, České Budějovice 37005, Czech Republic; E-Mails: [email protected] (N.V.); [email protected] (J.T.) 3 Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 2/135, 16502 Prague 6, Czech Republic; E-Mails: [email protected] (Š.H.); [email protected] (P.C.); [email protected] (J.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-519-367-266; Fax: +420-519-367-222. Academic Editor: Derek J. McPhee Received: 16 February 2015 / Accepted: 2 April 2015 / Published: 8 April 2015 Abstract: Grape cane, leaves and grape marc are waste products from viticulture, which can be used to obtain secondary stilbene derivatives with high antioxidant value. The presented work compares several extraction methods: maceration at laboratory temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction. To obtain trans-resveratrol, trans-ε-viniferin and r2-viniferin from grape cane of the V.
    [Show full text]
  • Literature Review Zero Alcohol Red Wine
    A 1876 LI A A U R S T T S R U A L A I A FLAVOURS, FRAGRANCES AND INGREDIENTS 6 1 7 8 7 8 1 6 A I B A L U A S R T B Essential Oils, Botanical Extracts, Cold Pressed Oils, BOTANICAL Infused Oils, Powders, Flours, Fermentations INNOVATIONS LITERATURE REVIEW HEALTH BENEFITS RED WINE ZERO ALCOHOL RED WINE RED WINE EXTRACT POWDER www.botanicalinnovations.com.au EXECUTIVE SUMMARY The term FRENCH PARADOX is used to describe the relatively low incidence of cardiovascular disease in the French population despite the high consumption of red wine. Over the past 27 years numerous clinical studies have found a linkages with the ANTIOXIDANTS in particular, the POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS in red wine and reduced incidences of cardiovascular disease. However, the alcohol in wine limits the benefits of wine. Studies have shown that zero alcohol red wine and red wine extract which contain the same ANTIOXIDANTS including POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS has the same is not more positive health benefits. The following literature review details some of the most recent positive health benefits derived from the ANTIOXIDANTS found in red wine POLYPHENOLS: RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS. The positive polyphenolic antioxidant effects of the polyphenols in red wine include: • Cardio Vascular Health Benefits • Increase antioxidants in the cardiovascular system • Assisting blood glucose control • Skin health • Bone Health • Memory • Liking blood and brain health • Benefits
    [Show full text]
  • Molecular Cloning and Functional Characterization of an O-Methyltransferase Catalyzing 4 -O-Methylation of Resveratrol in Acorus
    Journal of Bioscience and Bioengineering VOL. 127 No. 5, 539e543, 2019 www.elsevier.com/locate/jbiosc Molecular cloning and functional characterization of an O-methyltransferase catalyzing 40-O-methylation of resveratrol in Acorus calamus Takao Koeduka,1,* Miki Hatada,1 Hideyuki Suzuki,2 Shiro Suzuki,3 and Kenji Matsui1 Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry, Yamaguchi University, Yamaguchi 753-8515, Japan,1 Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan,2 and Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan3 Received 17 July 2018; accepted 13 October 2018 Available online 22 November 2018 Resveratrol and its methyl ethers, which belong to a class of natural polyphenol stilbenes, play important roles as biologically active compounds in plant defense as well as in human health. Although the biosynthetic pathway of resveratrol has been fully elucidated, the characterization of resveratrol-specific O-methyltransferases remains elusive. In this study, we used RNA-seq analysis to identify a putative aromatic O-methyltransferase gene, AcOMT1,inAcorus calamus. Recombinant AcOMT1 expressed in Escherichia coli showed high 40-O-methylation activity toward resveratrol and its derivative, isorhapontigenin. We purified a reaction product enzymatically formed from resveratrol by AcOMT1 and confirmed it as 40-O-methylresveratrol (deoxyrhapontigenin). Resveratrol and isorhapontigenin were the most preferred substrates with apparent Km values of 1.8 mM and 4.2 mM, respectively. Recombinant AcOMT1 exhibited reduced activity toward other resveratrol derivatives, piceatannol, oxyresveratrol, and pinostilbene. In contrast, re- combinant AcOMT1 exhibited no activity toward pterostilbene or pinosylvin. These results indicate that AcOMT1 showed high 40-O-methylation activity toward stilbenes with non-methylated phloroglucinol rings.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0209617 A1 Lobisser Et Al
    US 20130209.617A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0209617 A1 Lobisser et al. (43) Pub. Date: Aug. 15, 2013 (54) COMPOSITIONS AND METHODS FOR USE Publication Classification IN PROMOTING PRODUCE HEALTH (51) Int. Cl. (75) Inventors: George Lobisser, Bainbridge Island, A23B 7/16 (2006.01) WA (US); Jason Alexander, Yakima, (52) U.S. Cl. WA (US); Matt Weaver, Selah, WA CPC ........................................ A23B 7/16 (2013.01) (US) USPC ........... 426/102: 426/654; 426/573; 426/601; 426/321 (73) Assignee: PACE INTERNATIONAL, LLC, Seattle, WA (US) (57) ABSTRACT (21) Appl. No.: 13/571,513 Provided herein are compositions comprising one or more of (22) Filed: Aug. 10, 2012 a stilbenoid, stilbenoid derivative, stilbene, or stilbene deriva tive and a produce coating. The resulting compositions are Related U.S. Application Data coatings which promote the health of fruit, vegetables, and/or (60) Provisional application No. 61/522,061, filed on Aug. other plant parts, and/or mitigate decay of post-harvest fruit, 10, 2011. Vegetables, and/or other plant parts. Patent Application Publication Aug. 15, 2013 Sheet 1 of 10 US 2013/0209.617 A1 | s N i has() 3 S s c e (9) SSouffley Patent Application Publication Aug. 15, 2013 Sheet 2 of 10 US 2013/0209.617 A1 so in a N s H N S N N. sr N re C c g o c (saulu) dae. Patent Application Publication Aug. 15, 2013 Sheet 3 of 10 US 2013/0209.617 A1 N Y & | N Y m N 8 Š 8 S.
    [Show full text]
  • Anti-Tumor Properties of Methoxylated Analogues of Resveratrol in Malignant MCF-7 but Not in Non-Tumorigenic MCF-10A Mammary Epithelial Cell Lines T ⁎ Annick D
    Toxicology 422 (2019) 35–43 Contents lists available at ScienceDirect Toxicology journal homepage: www.elsevier.com/locate/toxicol Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines T ⁎ Annick D. van den Brand , Judith Villevoye, Sandra M. Nijmeijer, Martin van den Berg, Majorie B.M. van Duursen Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands ARTICLE INFO ABSTRACT Keywords: Resveratrol is a plant-derived polyphenol that is known for its anti-inflammatory and anti-tumorigenic prop- Cell cycle erties in in vitro and in vivo models. Recent studies show that some resveratrol analogues might be more potent Gene expression anti-tumor agents, which may partly be attributed to their ability to activate the aryl hydrocarbon receptor Breast cancer (AHR). Here, the anti-tumorigenic properties of resveratrol and structural analogues oxyresveratrol, pinos- Resveratrol tilbene, pterostilbene and tetramethoxystilbene (TMS) were studied in vitro, using in the malignant human MCF- 7 breast cancer cell line and non-tumorigenic breast epithelial cell line MCF-10A. Cell viability and migration assays showed that methoxylated analogues of resveratrol are more potent anti- tumorigenic compounds than resveratrol and its hydroxylated analogue oxyresveratrol, with 2,3’,4,5’-tetra- methoxy-trans-stilbene (TMS) being the most potent compound. TMS decreased MCF-7 tumor cell viability with 50% at 3.6 μM and inhibited migration with 37.5 ± 14.8% at 3 μM. In addition, TMS activated the AHR more potently (EC50 in a reporter gene assay 2.0 μM) and induced AHR-mediated induction of cytochrome P450 1A1 (CYP1A1) activity (EC50 value of 0.7 μM) more than resveratrol and the other analogues tested.
    [Show full text]
  • Extraction Et Hémisynthèse De Stilbènes De La Vigne Et Du Vin Pour Une Application En Santé Humaine Et Végétale Toni El Khawand
    Extraction et hémisynthèse de stilbènes de la vigne et du vin pour une application en santé humaine et végétale Toni El Khawand To cite this version: Toni El Khawand. Extraction et hémisynthèse de stilbènes de la vigne et du vin pour une application en santé humaine et végétale. Médecine humaine et pathologie. Université de Bordeaux, 2019. Français. NNT : 2019BORD0402. tel-03083318 HAL Id: tel-03083318 https://tel.archives-ouvertes.fr/tel-03083318 Submitted on 19 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ ŒNOLOGIE Par Toni EL KHAWAND Extraction et hémisynthèse de stilbènes de la vigne et du vin pour une application en santé humaine et végétale Sous la direction du Dr. Alain DECENDIT la co-direction du Pr. Tristan RICHARD et le co-encadrement du Dr. Stéphanie KRISA Soutenue publiquement le 18 décembre 2019 Membres du jury M. Rémy GHIDOSSI Professeur, Université de Bordeaux Président Mme. Marielle ADRIAN Professeur, Université de Bourgogne Rapporteur Mme. Laurence VOUTQUENNE Professeur, Université de Reims Rapporteur M.
    [Show full text]