Wo 2009/118338 A3

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2009/118338 A3 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 October 2009 (01.10.2009) WO 2009/118338 A3 (51) International Patent Classification: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, A61K 31/085 (2006.01) A61K 31/7004 (2006.01) EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 31/09 (2006.01) A61K 31/7048 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, A61K 31/353 (2006.01) A61P 25/28 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (21) International Application Number: NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, PCT/EP2009/0535 19 SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, (22) International Filing Date: UG, US, UZ, VC, VN, ZA, ZM, ZW. 25 March 2009 (25.03.2009) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (26) Publication Language: English ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (30) Priority Data: TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, 08300163.6 27 March 2008 (27.03.2008) EP ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), (71) Applicant (for all designated States except US): IN- OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, SERM (Institut National de Ia Sante et de Ia Recherche MR, NE, SN, TD, TG). Medicale) [FR/FR]; 101 rue de Tolbiac, F-75013 Paris (FR). Declarations under Rule 4.17: — of inventorship (Rule 4Λ 7(iv)) (72) Inventor; and (75) Inventor/Applicant (for US only): NERI, Christian [FR/ Published: FR]; U894 Centre de Recherche en, Psychiatrie et Neuro- — with international search report (Art. 21(3)) sciences, Site Broca-Sainte Anne, 2ter rue d'Alesia, F-75014 Paris (FR). — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of (74) Agents: CATHERINE, Alain et al; Cabinet Harle Et amendments (Rule 48.2(h)) Phelip, 7 rue de Madrid, F-75008 Paris (FR). (88) Date of publication of the international search report: (81) Designated States (unless otherwise indicated, for every 26 November 2009 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (54) Title: USE OF A POLYPHENOLIC TYPE COMPOUND FOR PREVENTING OR TREATING A POLYGLUTAMINE EXPANSION NEURODEGENERATIVE DISEASE (57) Abstract: The present invention relates to the use of polyphenolic type compounds as disclosed in the specification for pre- venting or treating a polyglutamine expansion neurodegenerative disease. A. CLASSIFICATION OF SUBJECT MATTER INV. A61K31/085 A61K31/09 A61K31/353 A61K31/7004 A61K31/7048 A61P25/28 According to International Patent Classification (IPC) o r t o both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal , CHEM ABS Data, WPI Data, BEILSTEIN Data c . DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 2008/021210 A (COMBINATORX INC [US]; 1-7, CHDI INC [US]; JIN XIAOWEI [US]; WILSON 10-19 AMY BETH) 21 February 2008 (2008-02-21) claims 30-32,37-39 page 67 WO 2006/076681 A (SIRTRIS PHARMACEUTICALS 1-7, INC [US]; MILBURN MICHAEL [US]; MILNE JILL 10-19 [US) 20 July 2006 (2006-07-20) pages 137-139 page 36, lines 8,9; compound DEOXARHAPONTIN page 34, line 3 ; compound KAEMPFEROL page 37, lines 24-26; compound QUERCETlN page 41, lines 30,31; compound MYRICETIN figure 24; compound PINOSYLVIN figure 25; compound BML233 -/-- Further documents are listed in the continuation of Box C. See patent family annex. * Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention 1 E" earlier document but published o n or after the international 1X 1 document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts o n priority daim(s) or involve a n inventive step when the document is taken alone which is cited to establish the publication date of another 1Y " document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the 1O " document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu¬ other means ments, such combination being obvious to a person skilled 1P " document published prior to the international filing date but in the art. later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 28 September 2009 09/10/2009 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswiik TeI. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Renard, Del phi ne Form PCT/ISA/210 (second sheet) (April 2005) C(Continuation). DOCUMENTS CONSIDERED T O B E RELEVANT Category* Citation o f document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 2005/092324 A (UNIV COLUMBIA [US]; 1,5,10, VITOLO OTTAVIO V [US]; NAKANISHI KOJI 13-19 [US]; SHELAN) 6 October 2005 (2005-10-06) claims 23-25,34,38; compounds QUERCETIN, KAEMPFEROL, ISORHAMNETIN X US 2003/162231 A l (WETZEL RONALD [US] ET 1,5,10, AL) 28 August 2003 (2003-08-28) 13-19 claims 45-49; compound MYRICETIN X WO 2008/011083 A (CORNELL RES FOUNDATION 1,6,10, INC [US]; RATAN RAJIV R [US]) 13-19 24 January 2008 (2008-01-24) claims 1,12; compounds PINOSYLVIN, PINOSYLVIN METHYL ETHER, compound RESVERATROL DERIVATIVE X WO 03/103583 A (OKLAHOMA MED RES FOUND 1,6,7, [US]; HENSLEY KENNETH L [US]; FLOYD ROBERT 10-19 A [U) 18 December 2003 (2003-12-18) claims 1,12,29,30 X PARKER J A ET AL: "RESVERATROL RESCUES 1,6,7, MUTANT POLYGLUTAMINE CYTOTOXICITY IN 10-19 NEMATODE AND MAMMALIAN NEURONS" NATURE GENETICS, NATURE AMERICA, NEW YORK, US, vol. 37, no. 4 , 1 April 2005 (2005-04-01), page 349/350,555, XP009057587 ISSN: 1061-4036 cited in the application compound RESVERATROL the whole document X WO 2007/045876 A (MERZ PHARMA GMBH & CO 1,8-10, KGAA [DE]; PARSONS CHRISTOPHER GRAHAM RAP 13-19 [DE];) 26 April 2007 (2007-04-26) claims 1,28,29 pages 43-47; examples 3,11,15 X US 2006/110481 A l (MAJEED MUHAMMED [US] ET 15-19 AL) 25 May 2006 (2006-05-25) claim 1 ; compound ARTEMITINE X WO 2007/004952 A (DENOVASTELLA AB [SE]; 15-19 FAERGEMANN JAN [SE]; HEDNER THOMAS [SE]; STERNER) 11 January 2007 (2007-01-11) claims 1,5; compound CASTICINE -/~ Form PCT/ISA/210 (continuation of second sheet) (April 2005) C(Contlnuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant t o claim No. X SL)I Z ET AL: "Synthesi s and topoi somerase 15-19 i nhibitory activities of novel aza-anal ogues of f l avones" EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS , FR, vol . 34, no. 5 , 1 May 1999 (1999-05-01), pages 381-387, XP004180345 ISSN: 0223-5234 tables l ,and, 4 X KARAWAJCZYK ET AL: "Properties of 15-19 f l avonoids influencing the binding t o b i l itransl pease investigated by neural . network model l ing" BIOCHEMICAL PHARMACOLOGY, PERGAMON, OXFORD-, GB, vol . 73, no . 2 , 8 December 2006 (2006-12-08) , pages , 308-320, XP022342421 ISSN: 0006-2952 . table 2 ; compound FLAVONOL DERIVATIVES X AQUINO, RITA ET AL: "Anti oxidant and 15-19 photoprotective activity of a crude extract of CuI ci t i urn reflexum H. B.K. l eaves and their major f l avonoids" JOURNAL OF ETHNOPHARMACOLOGY , 79(2) , 183-191 CODEN: J0ETD7; ISSN: 0378-8741 , 2002, XP007905400 compound 2 X EP 1 607 098 A (COGNIS FRANCE S A S [FR]) 15-19 21 December 2005 (2005-12-21) c l aims 1 , 5 X WO 2006/029371 A (HU YINGHE [US]) 15-19 16 March 2006 (2006-03-16) figure 5 ; compound 26 X CHIN YOUNG-WON ET AL: "Hepatoprotective 15-19 f l avonol glycosides from the aeri al parts of Rodgersia podophyl l a . " PLANTA MEDICA JUN 2004, vol . 70, no. 6 , June '2004 (2004-06) , pages 576-577, XP007905398 ISSN: 0032-0943 table 2 ; compound 2 AND 4 X US 2006/105967 Al (HSU LI-WEI [TW] ET AL) 15-19 18 May 2006 (2006-05-18) c l aims 8,9; compounds QERCETIN-3-D-GLUCOSIDE Form POT/ISA/21Q (continuation of second sheet) (April 2005) C(Continuatlon).
Recommended publications
  • Rational Design of Resveratrol O-Methyltransferase for the Production of Pinostilbene
    International Journal of Molecular Sciences Article Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Daniela P. Herrera 1 , Andrea M. Chánique 1,2 , Ascensión Martínez-Márquez 3, Roque Bru-Martínez 3 , Robert Kourist 2 , Loreto P. Parra 4,* and Andreas Schüller 4,5,* 1 Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile; [email protected] (D.P.H.); [email protected] (A.M.C.) 2 Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; [email protected] 3 Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, 03690 Alicante, Spain; [email protected] (A.M.-M.); [email protected] (R.B.-M.) 4 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile 5 Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile * Correspondence: [email protected] (L.P.P.); [email protected] (A.S.) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that Citation: Herrera, D.P.; Chánique, monomethylate resveratrol to yield pinostilbene have been described so far.
    [Show full text]
  • Literature Review Zero Alcohol Red Wine
    A 1876 LI A A U R S T T S R U A L A I A FLAVOURS, FRAGRANCES AND INGREDIENTS 6 1 7 8 7 8 1 6 A I B A L U A S R T B Essential Oils, Botanical Extracts, Cold Pressed Oils, BOTANICAL Infused Oils, Powders, Flours, Fermentations INNOVATIONS LITERATURE REVIEW HEALTH BENEFITS RED WINE ZERO ALCOHOL RED WINE RED WINE EXTRACT POWDER www.botanicalinnovations.com.au EXECUTIVE SUMMARY The term FRENCH PARADOX is used to describe the relatively low incidence of cardiovascular disease in the French population despite the high consumption of red wine. Over the past 27 years numerous clinical studies have found a linkages with the ANTIOXIDANTS in particular, the POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS in red wine and reduced incidences of cardiovascular disease. However, the alcohol in wine limits the benefits of wine. Studies have shown that zero alcohol red wine and red wine extract which contain the same ANTIOXIDANTS including POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS has the same is not more positive health benefits. The following literature review details some of the most recent positive health benefits derived from the ANTIOXIDANTS found in red wine POLYPHENOLS: RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS. The positive polyphenolic antioxidant effects of the polyphenols in red wine include: • Cardio Vascular Health Benefits • Increase antioxidants in the cardiovascular system • Assisting blood glucose control • Skin health • Bone Health • Memory • Liking blood and brain health • Benefits
    [Show full text]
  • Molecular Cloning and Functional Characterization of an O-Methyltransferase Catalyzing 4 -O-Methylation of Resveratrol in Acorus
    Journal of Bioscience and Bioengineering VOL. 127 No. 5, 539e543, 2019 www.elsevier.com/locate/jbiosc Molecular cloning and functional characterization of an O-methyltransferase catalyzing 40-O-methylation of resveratrol in Acorus calamus Takao Koeduka,1,* Miki Hatada,1 Hideyuki Suzuki,2 Shiro Suzuki,3 and Kenji Matsui1 Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry, Yamaguchi University, Yamaguchi 753-8515, Japan,1 Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan,2 and Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan3 Received 17 July 2018; accepted 13 October 2018 Available online 22 November 2018 Resveratrol and its methyl ethers, which belong to a class of natural polyphenol stilbenes, play important roles as biologically active compounds in plant defense as well as in human health. Although the biosynthetic pathway of resveratrol has been fully elucidated, the characterization of resveratrol-specific O-methyltransferases remains elusive. In this study, we used RNA-seq analysis to identify a putative aromatic O-methyltransferase gene, AcOMT1,inAcorus calamus. Recombinant AcOMT1 expressed in Escherichia coli showed high 40-O-methylation activity toward resveratrol and its derivative, isorhapontigenin. We purified a reaction product enzymatically formed from resveratrol by AcOMT1 and confirmed it as 40-O-methylresveratrol (deoxyrhapontigenin). Resveratrol and isorhapontigenin were the most preferred substrates with apparent Km values of 1.8 mM and 4.2 mM, respectively. Recombinant AcOMT1 exhibited reduced activity toward other resveratrol derivatives, piceatannol, oxyresveratrol, and pinostilbene. In contrast, re- combinant AcOMT1 exhibited no activity toward pterostilbene or pinosylvin. These results indicate that AcOMT1 showed high 40-O-methylation activity toward stilbenes with non-methylated phloroglucinol rings.
    [Show full text]
  • Anti-Tumor Properties of Methoxylated Analogues of Resveratrol in Malignant MCF-7 but Not in Non-Tumorigenic MCF-10A Mammary Epithelial Cell Lines T ⁎ Annick D
    Toxicology 422 (2019) 35–43 Contents lists available at ScienceDirect Toxicology journal homepage: www.elsevier.com/locate/toxicol Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines T ⁎ Annick D. van den Brand , Judith Villevoye, Sandra M. Nijmeijer, Martin van den Berg, Majorie B.M. van Duursen Institute for Risk Assessment Sciences, Toxicology Department, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands ARTICLE INFO ABSTRACT Keywords: Resveratrol is a plant-derived polyphenol that is known for its anti-inflammatory and anti-tumorigenic prop- Cell cycle erties in in vitro and in vivo models. Recent studies show that some resveratrol analogues might be more potent Gene expression anti-tumor agents, which may partly be attributed to their ability to activate the aryl hydrocarbon receptor Breast cancer (AHR). Here, the anti-tumorigenic properties of resveratrol and structural analogues oxyresveratrol, pinos- Resveratrol tilbene, pterostilbene and tetramethoxystilbene (TMS) were studied in vitro, using in the malignant human MCF- 7 breast cancer cell line and non-tumorigenic breast epithelial cell line MCF-10A. Cell viability and migration assays showed that methoxylated analogues of resveratrol are more potent anti- tumorigenic compounds than resveratrol and its hydroxylated analogue oxyresveratrol, with 2,3’,4,5’-tetra- methoxy-trans-stilbene (TMS) being the most potent compound. TMS decreased MCF-7 tumor cell viability with 50% at 3.6 μM and inhibited migration with 37.5 ± 14.8% at 3 μM. In addition, TMS activated the AHR more potently (EC50 in a reporter gene assay 2.0 μM) and induced AHR-mediated induction of cytochrome P450 1A1 (CYP1A1) activity (EC50 value of 0.7 μM) more than resveratrol and the other analogues tested.
    [Show full text]
  • Extraction Et Hémisynthèse De Stilbènes De La Vigne Et Du Vin Pour Une Application En Santé Humaine Et Végétale Toni El Khawand
    Extraction et hémisynthèse de stilbènes de la vigne et du vin pour une application en santé humaine et végétale Toni El Khawand To cite this version: Toni El Khawand. Extraction et hémisynthèse de stilbènes de la vigne et du vin pour une application en santé humaine et végétale. Médecine humaine et pathologie. Université de Bordeaux, 2019. Français. NNT : 2019BORD0402. tel-03083318 HAL Id: tel-03083318 https://tel.archives-ouvertes.fr/tel-03083318 Submitted on 19 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ ŒNOLOGIE Par Toni EL KHAWAND Extraction et hémisynthèse de stilbènes de la vigne et du vin pour une application en santé humaine et végétale Sous la direction du Dr. Alain DECENDIT la co-direction du Pr. Tristan RICHARD et le co-encadrement du Dr. Stéphanie KRISA Soutenue publiquement le 18 décembre 2019 Membres du jury M. Rémy GHIDOSSI Professeur, Université de Bordeaux Président Mme. Marielle ADRIAN Professeur, Université de Bourgogne Rapporteur Mme. Laurence VOUTQUENNE Professeur, Université de Reims Rapporteur M.
    [Show full text]
  • Metabolism of Stilbenoids by Human Faecal Microbiota
    molecules Article Metabolism of Stilbenoids by Human Faecal Microbiota Veronika Jarosova 1,2 , Ondrej Vesely 1, Petr Marsik 1, Jose Diogenes Jaimes 1 , Karel Smejkal 3, Pavel Kloucek 1 and Jaroslav Havlik 1,* 1 Department of Food Science, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6–Suchdol, Czech Republic; [email protected] (V.J.); [email protected] (O.V.); [email protected] (P.M.); [email protected] (J.D.J.); [email protected] (P.K.) 2 Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6–Suchdol, Czech Republic 3 Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-777-558-468 Academic Editors: Pedro Mena and Rafael Llorach Asunción Received: 18 February 2019; Accepted: 18 March 2019; Published: 23 March 2019 Abstract: Stilbenoids are dietary phenolics with notable biological effects on humans. Epidemiological, clinical, and nutritional studies from recent years have confirmed the significant biological effects of stilbenoids, such as oxidative stress protection and the prevention of degenerative diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Stilbenoids are intensively metabolically transformed by colon microbiota, and their corresponding metabolites might show different or stronger biological activity than their parent molecules. The aim of the present study was to determine the metabolism of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunalbene, batatasin III, and pinostilbene), mediated by colon microbiota. Stilbenoids were fermented in an in vitro faecal fermentation system using fresh faeces from five different donors as an inoculum.
    [Show full text]
  • Biotechnological Advances in Resveratrol Production and Its Chemical Diversity
    Review Biotechnological Advances in Resveratrol Production and its Chemical Diversity Samir Bahadur Thapa 1,†, Ramesh Prasad Pandey 1,2,†, Yong Il Park 3 and Jae Kyung Sohng 1,2,* 1 Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam 31460, Korea 2 Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Chungnam 31460, Korea 3 Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea * Correspondence: [email protected] † Contributed equally to prepare this review article. Received: 3 June 2019; Accepted: 1 July 2019; Published: 15 July 2019 Abstract The very well-known bioactive natural product, resveratrol (3,5,4′-trihydroxystilbene), is a highly studied secondary metabolite produced by several plants, particularly grapes, passion fruit, white tea, and berries. It is in high demand not only because of its wide range of biological activities against various kinds of cardiovascular and nerve-related diseases, but also as important ingredients in pharmaceuticals and nutritional supplements. Due to its very low content in plants, multi-step isolation and purification processes, and environmental and chemical hazards issues, resveratrol extraction from plants is difficult, time consuming, impracticable, and unsustainable. Therefore, microbial hosts, such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, are commonly used as an alternative production source by improvising resveratrol biosynthetic genes in them. The biosynthesis genes are rewired applying combinatorial biosynthetic systems, including metabolic engineering and synthetic biology, while optimizing the various production processes. The native biosynthesis of resveratrol is not present in microbes, which are easy to manipulate genetically, so the use of microbial hosts is increasing these days.
    [Show full text]
  • Artocarpus Lakoocha Extract Inhibits LPS-Induced Inflammatory
    International Journal of Molecular Sciences Article Artocarpus lakoocha Extract Inhibits LPS-Induced Inflammatory Response in RAW 264.7 Macrophage Cells Phateep Hankittichai 1,2, Pensiri Buacheen 2,3, Pornsiri Pitchakarn 3 , Mingkwan Na Takuathung 1,4 , Nitwara Wikan 5, Duncan R. Smith 5 , Saranyapin Potikanond 1,4 and Wutigri Nimlamool 1,4,* 1 Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (P.H.); [email protected] (M.N.T.); [email protected] (S.P.) 2 Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 3 Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 4 Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand 5 Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand; [email protected] (N.W.); [email protected] (D.R.S.) * Correspondence: [email protected]; Tel./Fax: +66-53-934597 Received: 27 January 2020; Accepted: 14 February 2020; Published: 17 February 2020 Abstract: Artocarpus lakoocha Roxb. (AL) has been known for its high content of stilbenoids, especially oxyresveratrol. AL has been used in Thai traditional medicine for centuries. However, the role of AL in regulating inflammation has not been elucidated. Here we investigated the molecular mechanisms underlying the anti-inflammation of AL ethanolic extract in RAW 264.7 murine macrophage cell line. The HPLC results revealed that this plant was rich in oxyresveratrol, and AL ethanolic extract exhibited anti-inflammatory properties. In particular, AL extract decreased lipopolysaccharide (LPS)-mediated production and secretion of cytokines and chemokine, including IL-6, TNF-α, and MCP-1.
    [Show full text]
  • Biological/Chemopreventive Activity of Stilbenes and Their Effect on Colon Cancer
    Review 1635 Biological/Chemopreventive Activity of Stilbenes and their Effect on Colon Cancer Author Agnes M. Rimando1, Nanjoo Suh2, 3 Affiliation 1 United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, MS, USA 2 Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 3 The Cancer Institute of New Jersey, New Brunswick, NJ, USA Key words Abstract ventive agents. One of the best-characterized ●" resveratrol ! stilbenes, resveratrol, has been known as an anti- ●" stilbenes Colon cancer is one of the leading causes of can- oxidant and an anti-aging compound as well as ●" colon cancer cer death in men and women in Western coun- an anti-inflammatory agent. Stilbenes have di- ●" inflammation tries. Epidemiological studies have linked the verse pharmacological activities, which include consumption of fruits and vegetables to a re- cancer prevention, a cholesterol-lowering effect, duced risk of colon cancer, and small fruits are enhanced insulin sensitivity, and increased life- particularly rich sources of many active phyto- span. This review summarizes results related to chemical stilbenes, such as resveratrol and pter- the potential use of various stilbenes as cancer ostilbene. Recent advances in the prevention of chemopreventive agents, their mechanisms of colon cancer have stimulated an interest in diet action, as well as their pharmacokinetics and ef- and lifestyle as an effective means of interven- ficacy for the prevention of colon cancer in ani- tion. As constituents of small fruits such as mals and humans. grapes, berries and their products, stilbenes are under intense investigation as cancer chemopre- received May 7, 2008 Introduction wood in response to fungal infection [5], [6].
    [Show full text]
  • International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, A61K 31/09 (2006.01) A61K9/00 (2006.01) KM, ML, MR, NE, SN, TD, TG)
    ( International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, A61K 31/09 (2006.01) A61K9/00 (2006.01) KM, ML, MR, NE, SN, TD, TG). A61K 31/05 (2006.01) C07C 39/23 (2006.01) A61K 31/352 (2006.01) C07C 43/295 (2006.01) Published: A61K 36/185 (2006.01) C07C 311/60 (2006.01) — with international search report (Art. 21(3)) A61K 47/10 (2017.01) C07D 311/80 (2006.01) (21) International Application Number: PCT/CA20 19/050166 (22) International Filing Date: 08 February 2019 (08.02.2019) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/628,735 09 February 2018 (09.02.2018) US (71) Applicant: NEUTRISCI INTERNATIONAL INC. [CA/CA]; Suite 1A, 4015 - 1st Street SE, Calgary, Alberta T2G 4X7 (CA). (72) Inventors: REHMAN, Glen; c/o NeutriSci International Inc., Suite 1A - 4015 - 1st Street SE, Calgary, Alberta T2G 4X7 (CA). BUSHFIELD, Keith Patrick; c/o NeutriSci In¬ ternational Inc., Suite 1A - 4015 - 1st Street SE, Calgary, Alberta T2G 4X7 (CA). (74) Agent: ROACH, Mark; Flicks & Associates, 709 Main Street, Suite 300, Canmore, Alberta T1W 2B2 (CA). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • The Bioactivities of Resveratrol and Its Naturally Occurring Derivatives on Skin
    Volume 29 Issue 1 Article 2 2021 The Bioactivities of Resveratrol and Its Naturally Occurring Derivatives on Skin Follow this and additional works at: https://www.jfda-online.com/journal Part of the Alternative and Complementary Medicine Commons, Medicinal Chemistry and Pharmaceutics Commons, Natural Products Chemistry and Pharmacognosy Commons, and the Pharmacology Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Lin, Ming-Hsien; Hung, Chi-Feng; Sung, Hsin-Ching; Yang, Shih-Chun; Yu, Huang-Ping; and Fang, Jia-You (2021) "The Bioactivities of Resveratrol and Its Naturally Occurring Derivatives on Skin," Journal of Food and Drug Analysis: Vol. 29 : Iss. 1 , Article 2. Available at: https://doi.org/10.38212/2224-6614.1151 This Review Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis. The Bioactivities of Resveratrol and Its Naturally Occurring Derivatives on Skin Cover Page Footnote The authors are grateful to the financial support from Chang Gung Memorial Hospital (CMRPD1G0411-2) and Chi Mei Medical Center (108-CM-FJU-03). This review article is available in Journal of Food and Drug Analysis: https://www.jfda-online.com/journal/vol29/iss1/ 2 The bioactivities of resveratrol and its naturally occurring derivatives on skin REVIEW ARTICLE Ming-Hsien Lin a,1, Chi-Feng Hung b,1, Hsin-Ching
    [Show full text]
  • Preclinical and Clinical Studies
    ANTICANCER RESEARCH 24: 2783-2840 (2004) Review Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies BHARAT B. AGGARWAL1, ANJANA BHARDWAJ1, RISHI S. AGGARWAL1, NAVINDRA P. SEERAM2, SHISHIR SHISHODIA1 and YASUNARI TAKADA1 1Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, Texas 77030; 2UCLA Center for Human Nutrition, David Geffen School of Medicine, 900 Veteran Avenue, Los Angeles, CA 90095-1742, U.S.A. Abstract. Resveratrol, trans-3,5,4'-trihydroxystilbene, was first and cervical carcinoma. The growth-inhibitory effects of isolated in 1940 as a constituent of the roots of white hellebore resveratrol are mediated through cell-cycle arrest; up- (Veratrum grandiflorum O. Loes), but has since been found regulation of p21Cip1/WAF1, p53 and Bax; down-regulation of in various plants, including grapes, berries and peanuts. survivin, cyclin D1, cyclin E, Bcl-2, Bcl-xL and cIAPs; and Besides cardioprotective effects, resveratrol exhibits anticancer activation of caspases. Resveratrol has been shown to suppress properties, as suggested by its ability to suppress proliferation the activation of several transcription factors, including NF- of a wide variety of tumor cells, including lymphoid and Î B, AP-1 and Egr-1; to inhibit protein kinases including IÎ B· myeloid cancers; multiple myeloma; cancers of the breast, kinase, JNK, MAPK, Akt, PKC, PKD and casein kinase II; prostate, stomach, colon, pancreas, and thyroid; melanoma; and to down-regulate products of genes such as COX-2, head and neck squamous cell carcinoma; ovarian carcinoma; 5-LOX, VEGF, IL-1, IL-6, IL-8, AR and PSA.
    [Show full text]