Microbial Communities of Aquatic Environments on Heard Island Characterized by Pyrotag Sequencing and Environmental Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
49°S, 69°E) Between 1963 and 2006 Etienne Berthier, Raymond Le Bris, Laure Mabileau, L
Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006 Etienne Berthier, Raymond Le Bris, Laure Mabileau, L. Testut, Frédérique Rémy To cite this version: Etienne Berthier, Raymond Le Bris, Laure Mabileau, L. Testut, Frédérique Rémy. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. Journal of Geophysical Research, American Geophysical Union, 2009, 114, pp.F03005. 10.1029/2008JF001192. hal-00406745 HAL Id: hal-00406745 https://hal.archives-ouvertes.fr/hal-00406745 Submitted on 23 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. Berthier E. 1*, Le Bris R. 2, Mabileau L. 1, Testut L. 3 & Rémy F. 1 1 LEGOS, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse, CEDEX 9, France. 2 Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. 3 Université de Toulouse; UPS (OMP-PCA); LEGOS; 14 Av. Edouard Belin, F-31400 Toulouse, France. * corresponding author [email protected] Citation : Berthier, E., Le Bris, R., Mabileau, L., Testut, L., & Rémy, F. -
Identification of Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters
fmicb-07-00339 March 22, 2016 Time: 11:12 # 1 ORIGINAL RESEARCH published: 22 March 2016 doi: 10.3389/fmicb.2016.00339 Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters Hanna M. Farnelid1,2*, Kendra A. Turk-Kubo1 and Jonathan P. Zehr1 1 Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA, 2 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla Edited by: within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria Xavier Mayali, and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living Lawrence Livermore National Laboratory, USA bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some Reviewed by: of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of Cécile Lepère, bacterial sequences, which were not prevalent in the corresponding bulk seawater Blaise Pascal University, France Manuela Hartmann, samples, indicates that there was also a selection for specific OTUs in association with National Oceanography Centre, UK photosynthetic picoeukaryotes suggesting specific functional associations. The results Michael Morando, show that diverse bacterial phylotypes are found in association with photosynthetic University of Southern California, USA picoeukaryotes. -
Cyanobacteria Blooms in the Baltic Sea: a Review of Models and Facts
https://doi.org/10.5194/bg-2020-151 Preprint. Discussion started: 19 May 2020 c Author(s) 2020. CC BY 4.0 License. Cyanobacteria Blooms in the Baltic Sea: A Review of Models and Facts Britta Munkes1, Ulrike Löptien1,2, and Heiner Dietze1,2 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. 2Institute of Geosciences, Christian-Albrechts-University of Kiel, Ludewig-Meyn-Str. 10, 24 118 Kiel, Germany Correspondence: Britta Munkes ([email protected]) Abstract. The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international man- agement efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add bioavailable nitrogen to the already over-fertilised system and thereby enhance primary production, export of organic matter to depth and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood and this 5 adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current un- derstanding of cyanobacteria bloom dynamics. We summarise published field studies, laboratory experiments and dissect the basic principles ingrained in state-of-the-art coupled ocean-circulation biogeochemical models. 1 Introduction 10 The Baltic Sea is a shallow, brackish and semi-enclosed sea in central Northern Europe. It’s drainage basin is densely populated by around 84 million people. Their footprint exerts pressure on the ecosystem (Unger et al., 2013; Hannerz and Destouni, 2006). One, particularly severe, problem is eutrophication. Antropogenic nutrients enter the Baltic Sea via rivers and air-sea fluxes (Helcom, 2018, 2014). -
Stimulated Bacterioplankton Growth and Selection for Certain Bacterial Taxa in the Vicinity of the Ctenophore Mnemiopsis Leidyi
ORIGINAL RESEARCH ARTICLE published: 16 August 2012 doi: 10.3389/fmicb.2012.00302 Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi Julie Dinasquet 1,2, Lena Granhag 3,4*andLasse Riemann 2 1 Department of Natural Sciences, Linnaeus University, Kalmar, Sweden 2 Marine Biological Section, University of Copenhagen, Helsingør, Denmark 3 Department of Marine Ecology-Kristineberg, University of Gothenburg, Gothenburg, Sweden 4 Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden Edited by: Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Kam W. Tang, Virginia Institute of Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon Marine Science, USA by intensive grazing activities and mucus release. This will potentially influence Reviewed by: bacterioplankton activity and community composition, at least at local scales; however, Hans-Peter Grossart, IGB-Leibniz-Institute of Freshwater available studies on this are scarce. In the present study we examined effects of M. leidyi Ecology and Inland Fisheries, on bacterioplankton growth and composition in incubation experiments. Moreover, we Germany examined community composition of bacteria associated with the surface and gut Samantha L. Bickel, Virginia Institute of M. leidyi. High release of ammonium and high bacterial growth was observed in of Marine Science, USA the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S *Correspondence: Lena Granhag, Department of rRNA genes showed specific bacterial communities in treatments with M. leidyi as Marine Ecology-Kristineberg, well as specific communities associated with M. leidyi tissue and gut. In particular, University of Gothenburg, members of Flavobacteriaceae were associated with M. -
Rhythmicity of Coastal Marine Picoeukaryotes, Bacteria and Archaea Despite Irregular Environmental Perturbations
Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, et al.. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME Journal, Nature Publishing Group, 2019, 13 (2), pp.388-401. 10.1038/s41396- 018-0281-z. hal-02326251 HAL Id: hal-02326251 https://hal.archives-ouvertes.fr/hal-02326251 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel -
Nitrogen Fixation Among Marine Bacterioplankton
Nitrogen Fixation Among Marine Bacterioplankton Kjärstin H. Boström Department of Biology & Environmental Science University of Kalmar Sweden 2006 AKADEMISK AVHANDLING som för avläggande av Filosofie Doktorsexamen vid Naturvetenskapliga Fakulteten vid högskolan i Kalmar kommer att offentligt försvaras fredagen den 20 januari 2006 Doctoral thesis 2006 University of Kalmar Faculty of Natural Sciences Dissertation series No. 26 Kjärstin H. Boström Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Supervisor: Dr. Lasse Riemann, Assistant Professor Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Opponent: Dr. Grieg Steward, Assistant Professor Department of Oceanography University of Hawaii, Honolulu, HI 96822, USA 2006 Kjärstin H. Boström ISBN: 91-89584-52-X, ISSN: 1650-2779, pp. 1-26 Printed by: Högskolans tryckeri, Kalmar 2 To Frida & Emma 3 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................4 ABSTRACT...................................................................................................................................5 SVENSK SAMMANFATTNING...............................................................................................6 LIST OF PUBLICATIONS.........................................................................................................8 INTRODUCTION ........................................................................................................................9 -
Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer). -
Factors Controlling the Community Structure of Picoplankton in Contrasting Marine Environments
Biogeosciences, 15, 6199–6220, 2018 https://doi.org/10.5194/bg-15-6199-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Factors controlling the community structure of picoplankton in contrasting marine environments Jose Luis Otero-Ferrer1, Pedro Cermeño2, Antonio Bode6, Bieito Fernández-Castro1,3, Josep M. Gasol2,5, Xosé Anxelu G. Morán4, Emilio Marañon1, Victor Moreira-Coello1, Marta M. Varela6, Marina Villamaña1, and Beatriz Mouriño-Carballido1 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain 2Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 3Departamento de Oceanografía, Instituto de investigacións Mariñas (IIM-CSIC), Vigo, Spain 4King Abdullah University of Science and Technology (KAUST), Read Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia 5Centre for Marine Ecosystem Research, School of Sciences, Edith Cowan University, WA, Perth, Australia 6Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain Correspondence: Jose Luis Otero-Ferrer ([email protected]) Received: 27 April 2018 – Discussion started: 4 June 2018 Revised: 4 October 2018 – Accepted: 10 October 2018 – Published: 26 October 2018 Abstract. The effect of inorganic nutrients on planktonic as- played a significant role. Nitrate supply was the only fac- semblages has traditionally relied on concentrations rather tor that allowed the distinction among the ecological -
Lists of Names of Prokaryotic Candidatus Taxa
NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code. -
State of the Antarctic and Southern Ocean Climate System Paul Andrew Mayewski University of Maine, [email protected]
The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 1-2009 State of the Antarctic and Southern Ocean Climate System Paul Andrew Mayewski University of Maine, [email protected] M. P. Meredith C. P. Summerhayes J. Turner A. Worby See next page for additional authors Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Climate Commons, Glaciology Commons, Hydrology Commons, and the Meteorology Commons Repository Citation Mayewski, Paul Andrew; Meredith, M. P.; Summerhayes, C. P.; Turner, J.; Worby, A.; Barrett, P. J.; Casassa, G.; Bertler, Nancy; Bracegirdle, T.; Naveira Garabato, A. C.; Bromwich, D.; Campbell, H.; Hamilton, Gordon S.; Lyons, W. B.; Maasch, Kirk A.; Aoki, S.; Xiao, C.; and van Ommen, Tas, "State of the Antarctic and Southern Ocean Climate System" (2009). Earth Science Faculty Scholarship. 272. https://digitalcommons.library.umaine.edu/ers_facpub/272 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Authors Paul Andrew Mayewski, M. P. Meredith, C. P. Summerhayes, J. Turner, A. Worby, P. J. Barrett, G. Casassa, Nancy Bertler, T. Bracegirdle, A. C. Naveira Garabato, D. Bromwich, H. Campbell, Gordon S. Hamilton, W. B. Lyons, Kirk A. Maasch, S. Aoki, C. Xiao, and Tas van Ommen This article is available at DigitalCommons@UMaine: https://digitalcommons.library.umaine.edu/ers_facpub/272 STATE OF THE ANTARCTIC AND SOUTHERN OCEAN CLIMATE SYSTEM P. -
Diatom Modulation of Select Bacteria Through Use of Two Unique Secondary Metabolites
Diatom modulation of select bacteria through use of two unique secondary metabolites Ahmed A. Shibla, Ashley Isaaca,b, Michael A. Ochsenkühna, Anny Cárdenasc,d, Cong Feia, Gregory Behringera, Marc Arnouxe, Nizar Droue, Miraflor P. Santosa,1, Kristin C. Gunsaluse,f, Christian R. Voolstrac,d, and Shady A. Amina,2 aMarine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates; bInternational Max Planck Research School of Marine Microbiology, University of Bremen, Bremen 28334, Germany; cDepartment of Biology, University of Konstanz, Konstanz 78467, Germany; dRed Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; eCenter for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates; and fCenter for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003 Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 10, 2020 (received for review June 12, 2020) Unicellular eukaryotic phytoplankton, such as diatoms, rely on shown to heavily rely on phycosphere DOM to support their microbial communities for survival despite lacking specialized growth (14, 15) and must use motility, chemotaxis, and/or at- compartments to house microbiomes (e.g., animal gut). Microbial tachment to chase and colonize the phycosphere (16). Recent communities have been widely shown to benefit from diatom research has shown that a variety of interactions spanning mu- excretions that accumulate within the microenvironment sur- tualism, commensalism, and parasitism occur between diatoms rounding phytoplankton cells, known as the phycosphere. -
CHANGES in HEARD ISLAND GLACIERS, KING PENGUINS and Furby SEALS G
Papers and Proceedings of the Royal Society of Tasmania, Volume 133(2), 2000 47 CHANGES IN HEARD ISLAND GLACIERS, KING PENGUINS AND FURby SEALS G. M. Budd SINCE 1947 (with two tables, three text-figures and one plate) BUDD, G.M., 2000 (30:vi): Changes in Heard Island glaciers, king penguins and fur seals since 1947. In Banks M.R. & Brown, M.]. (Eds): HEARD ISLAND Pap. Proc. R. Soc. Tasm. 133 (2): 47-60. https://doi.org/10.26749/rstpp.133.2.47 ISSN 0080-4703. School of Exercise and RS. Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, Australia 2141. The purpose of this paper is to summarise and discuss the changes in glaciers, king penguins and fur seals reported by the nine wintering parties and 11 summer expeditions that have visited Heard Island since 1947, with emphasis upon those of the years between 1947 and 1971. These early years were notable for an initial period (1947-55) of minimal change, and a subsequent period(1963-71) of rapid change in which a complex pattern of asynchronous glacier retreat and readvance was observed and the main features of the island's recolonisation by king penguins and fur seals were established. Subsequent expeditions (1980-93) have reported continuing glacier recession, evidently in response to warmer air temperatures, and a continuing exponential increase in king penguins and fur seals. The glacier observations show that the Heard Island glaciers are sensitive indicators of climate change in the Southern Ocean, and of the interactions between climate and glacier topography. The island's recolonisation by king penguins and fur seals is attributed mainly to an improved food supply which may itself, like the glacier recession, be a response to changes in atmospheric and oceanic circulation.