Voting System Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Visual Analytics: New Tools for Gaining Insight from Your Data Ben Shneiderman [email protected] Founding Director (1983-2000), Human-Computer Interaction Lab Professor, Department of Computer Science Member, Institute for Advanced Computer Studies University of Maryland College Park, MD 20742 Visual Analytics: New Tools for Gaining Insight from Your Data Ben Shneiderman [email protected] Twitter: @benbendc University of Maryland College Park, MD 20742 Interdisciplinary research community - Computer Science & Info Studies - Psych, Socio, Poli Sci & MITH (www.cs.umd.edu/hcil) Design Issues • Input devices & strategies • Keyboards, pointing devices, voice • Direct manipulation • Menus, forms, commands • Output devices & formats • Screens, windows, color, sound • Text, tables, graphics • Instructions, messages, help • Collaboration & Social Media www.awl.com/DTUI • Help, tutorials, training Fifth Edition: 2010 • Search • Visualization HCI Pride: Serving 5B Users Mobile, desktop, web, cloud Diverse users: novice/expert, young/old, literate/illiterate, abled/disabled, cultural, ethnic & linguistic diversity, gender, personality, skills, motivation, ... Diverse applications: E-commerce, law, health/wellness, education, creative arts, community relationships, politics, IT4ID, policy negotiation, mediation, peace studies, ... Diverse interfaces: Ubiquitous, pervasive, embedded, tangible, invisible, multimodal, immersive/augmented/virtual, ambient, social, affective, empathic, persuasive, ... Workshop Overview Wordle.net Information Visualization • Visual bandwidth is enormous • Human perceptual skills are remarkable • Trend, cluster, gap, outlier... • Color, size, shape, proximity... • Three challenges • Meaningful visual displays of massive data • Interaction: widgets & window coordination • Process models for discovery Information Visualization & Visual Analytics • Visual bands • Human percle • Trend, clus.. • Color, size,.. • Three challe • Meaningful vi • Interaction: w • Process mo 1999 Information Visualization & Visual Analytics • Visual bandwidth is enormous • Human perceptual skills are remarkable • Trend, cluster, gap, outlier... • Color, size, shape, proximity... • Three challenges • Meaningful visual displays of massive da • Interaction: widgets & window coordinati • Process models for discovery 1999 2004 Information Visualization & Visual Analytics • Visual bandwidth is enormous • Human perceptual skills are remarkable • Trend, cluster, gap, outlier... • Color, size, shape, proximity... • Three challenges • Meaningful visual displays of massive data • Interaction: widgets & window coordination • Process models for discovery 1999 2004 2010 Business takes action • General Dynamics buys MayaViz • Agilent buys GeneSpring • Google buys Gapminder • Oracle buys Hyperion • Microsoft buys Proclarity • InfoBuilders buys Advizor Solutions • SAP buys (Business Objects buys Xcelsius & Inxight & Crystal Reports ) • IBM buys (Cognos buys Celequest) & ILOG • TIBCO buys Spotfire Spotfire: Retinol’s role in embryos & vision Spotfire: DC natality data http://registration.spotfire.com/eval/default_edu.asp 10M - 100M pixels: Large displays 100M-pixels & more 1M-pixels & less Small mobile devices Information Visualization: Mantra • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand • Overview, zoom & filter, details-on-demand Information Visualization: Data Types . • 1-D Linear Document Lens, SeeSoft, Info Mural • 2-D Map GIS, ArcView, PageMaker, Medical imagery • 3-D World CAD, Medical, Molecules, Architecture SciViz SciViz • Multi-Var Spotfire, Tableau, GGobi, TableLens, ParCoords, • Temporal LifeLines, TimeSearcher, Palantir, DataMontage • Tree Cone/Cam/Hyperbolic, SpaceTree, Treemap InfoViz InfoViz • Network Pajek, JUNG, UCINet, SocialAction, NodeXL infosthetics.com flowingdata.com infovis.org www.infovis.net/index.php?lang=2 Anscombe’s Quartet 1 2 3 4 x y x y x y x y 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 Anscombe’s Quartet 1 2 3 4 x y x y x y x y Property Value 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 Mean of x 9.0 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 Variance of x 11.0 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 Mean of y 7.5 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 Variance of y 4.12 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 Correlation 0.816 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 Linear regression y = 3 + 0.5x 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 Anscombe’s Quartet Temporal Data: TimeSearcher 1.3 • Time series • Stocks • Weather • Genes • User-specified patterns • Rapid search Temporal Data: TimeSearcher 2.0 • Long Time series (>10,000 time points) • Multiple variables • Controlled precision in match (Linear, offset, noise, amplitude) LifeLines: Patient Histories www.cs.umd.edu/hcil/lifelines LifeLines2: Contrast+Creatine LifeLines2: Align-Rank-Filter & Summarize LifeFlow: Aggregation Strategy Temporal Categorical Data (4 records) LifeLines2 format Tree of Event Sequences LifeFlow Aggregation www.cs.umd.edu/hcil/lifeflow LifeFlow: Interface with User Controls Treemap: Gene Ontology + Space filling + Space limited + Color coding + Size coding - Requires learning (Shneiderman, ACM Trans. on Graphics, 1992 & 2003) www.cs.umd.edu/hcil/treemap/ Treemap: Smartmoney MarketMap www.smartmoney.com/marketmap Market falls steeply Feb 27, 2007, with one exception Market falls steeply Sept 22, 2011, some exceptions Market mixed, February 8, 2008 Energy & Technology up, Financial & Health Care down Market rises, September 1, 2010, Gold contrarians Market rises, March 21, 2011, Sprint declines Treemap: Newsmap (Marcos Weskamp) newsmap.jp Treemap: WHC Emergency Room (6304 patients in Jan2006) Group by Admissions/MF, size by service time, color by age Treemap: WHC Emergency Room (6304 patients in Jan2006) (only those service time >12 hours) Group by Admissions/MF, size by service time, color by age Treemap: Supply Chain www.hivegroup.com Treemap: Nutritional Analysis www.hivegroup.com Treemap: Spotfire Bond Portfolio Analysis www.spotfire.com Treemap: NY Times – Car&Truck Sales www.cs.umd.edu/hcil/treemap/ Treemap (Voronoi): NY Times - Inflation www.nytimes.com/interactive/2008/05/03/business/20080403_SPENDING_GRAPHIC.html VisualComplexity.com : Manuel Lima Discovery Process: Systematic Yet Flexible Preparation • Own the problem & define the schedule • Data cleaning & conditioning • Handle missing & uncertain data • Extract subsets & link to related information SocialAction • Integrates statistics & visualization • 4 case studies, 4-8 weeks (journalist, bibliometrician, terrorist analyst, organizational analyst) • Identified desired features, gave strong positive feedback about benefits of integration www.cs.umd.edu/hcil/socialaction Perer & Shneiderman, CHI2008, IEEE CG&A 2009 Network from Database Tables www.centrifugesystems.com NodeXL: Network Overview for Discovery & Exploration in Excel www.codeplex.com/nodexl NodeXL: Network Overview for Discovery & Exploration in Excel www.codeplex.com/nodexl NodeXL: Import Dialogs www.codeplex.com/nodexl Tweets at #WIN09 Conference: 2 groups ‘GOP’ tweets, clustered (red-Republicans) Twitter networks: #SOTU WWW2010 Twitter Community Twitter Network for “msrtf11 OR techfest ” Twitter Network for “msrtf11 OR techfest ” Twitter Network for “SpaceX ” Twitter Network for “TTW” Twitter Network for #CI2012 No Location Philadelphia Innovation Clusters: People, Locations, Companies 11,000 nodes 26,000 links Pharmaceutical/Medical Pittsburgh Metro Westinghouse Electric No Location Philadelphia Innovation Clusters: People, Locations, Companies Pharmaceutical/Medical Pittsburgh Metro Westinghouse Electric No Location Philadelphia Innovation Clusters: People, Locations, Companies Patent Tech Navy SBIR (federal) PA DCED (state) Related patent 2: Federal agency Pharmaceutical/Medical 3: Enterprise Pittsburgh Metro 5: Inventors 9: Universities 10: PA DCED 11/12: Phil/Pitt metro cnty 13-15: Semi-rural/rural cnty 17: Foreign countries Westinghouse Electric 19: Other states CHI2010 Twitter Community www.codeplex.com/nodexl/ Flickr clusters for “mouse” Computer Mickey Animal Flickr networks Analyzing Social Media Networks with NodeXL I. Getting Started with Analyzing Social Media Networks 1. Introduction to Social Media and Social Networks 2. Social media: New Technologies of Collaboration 3. Social Network Analysis II. NodeXL Tutorial: Learning by Doing 4. Layout, Visual Design & Labeling 5. Calculating & Visualizing Network Metrics 6. Preparing Data & Filtering 7. Clustering &Grouping III Social Media Network Analysis Case Studies 8. Email 9. Threaded Networks 10. Twitter 11. Facebook 12. WWW 13. Flickr 14. YouTube 15. Wiki Networks www.elsevier.com/wps/find/bookdescription.cws_home/723354/description