FIELD OBSERVATIONS of TROPIDACRIS COLLARIS (ORTHOPTERA: ROMALEIDAE) Christopher K

Total Page:16

File Type:pdf, Size:1020Kb

FIELD OBSERVATIONS of TROPIDACRIS COLLARIS (ORTHOPTERA: ROMALEIDAE) Christopher K FIELD OBSERVATIONS OF TROPIDACRIS COLLARIS (ORTHOPTERA: ROMALEIDAE) Christopher K. Starr Dep't of Life Sciences, University of the West Indies,St Augustine, Trinidad & 'Ibbago cstarr{jj}centre.uwi.tt Tropidacris i s a neotropi c al genus of three known s peci es aggregation close to the ground on a small shrub c lose along­ that include the largest g r asshoppers in the world (Carbone ll side the gulch. I netted a sampl e of these, which disturbance 19 86). Two species, T. collaris and T. crisrata, have very caused the remai nin g individuals to scatter. Some time later broad ranges that include mos t of South America north of the I returned to that spot and found th e aggregation re-formed southern cone . The former is the species found on Margarita in a s imilar s ituation less than a meter from where I had first Is land, wh il e the range of the latter inc ludes Tri nidad and found it. Although I did not attempt to quantify ad ult densi­ Tobago. The two are readily distingui s hed by the fo llowing ty in any part of the gulch, they appeared to be most concen­ adult characters (Carbonell 1984.1986): a) a nte nnae enti rely trated within a very few meters of the aggregation of hoppers. yellow in T. collaris, basal two segments brown to black in T. I tas ted one hopper and found it to be very biller. approx­ cristata, b) dorsa l crest of pronotum continu ing o nto posteri­ imately like an adu lt mo narch butterfly (Danaus plexippus). ormas t lobe (metazona) in T . cristata but not T. collaris, c) Thi s distastefulness is consistent with the orange-and-black hindwings mainly orange to red in T. cristata, green Lo blue in body co lou rat ion . T. collaris. We will di s regard here the third, s maller s pecies, Casual observations els ewhe re around La Vecindad con­ T. de ca mps i, known from a si ng le locality in Colombia. firmed that th e adult grasshoppers were abundant over a Hoppers (larvae) of Tropidacris s how contrasting, evident­ large area. The local people with whom I spoke seemed ly warning colouration, whil e adults at res t are very well cam­ un surp ri sed by thi s and told me that it is a seasonal phenom­ ouflaged against vegetation . The forewing s bear a strong enon, although they were vague about the particular season resemblance to leaves, while the hindwings present s triking of appearance of adults or whether they are abundant every fla s h colouration. especially in T. cristata ( Rowell 1983 ; pers . year. They told me that T. collaris is locally known as lall­ obs.). gosta or fiangaragato. Adult Tropidacris are spectacular insects and are not rare Th e adults that I collected amounted to four fema les and throughout most of the genus's range . T. collaris is often 22 males with mean hind - femur le n g t hs of 38.8 mm ( range encountered a l ong much of the Caribbean coast and th e 36.5 - 42.0 mm) and 33.3 mm ( range 29 .0 - 37.5 mm ). respec­ ll anos region of Venezuela (F. Cerda, pers. co m m.). tively . Meas urement was of alcohol -preserved specimens with None thel ess, they are not often encountered in large num­ an ordi nary ruler to the nearest half millimeter. bers. I n Trinidad I have never seen two adult T. cristata in Di ssection of the females s howed that the two largest had one day and possibly not t wo in the same ca le ndar month. well-developed ovaries with apparently mature ova. The next Rowell 's (1983) brief account of T. cristata summarized the largest had slightl y developed ovaries. while the s mallest bi ological in for mation on record fo r the genus. ending wit h s howed n o ovarian development. t he remark that "Nothing very much is known of any of The sa mpl e of hoppers compri sed 19 fema les and 10 males . them." Carbonell ( 1986) s upplied s ome further details, not­ with hind-femur le ngths shown in Fig . I. Sex is readily deter­ ing that in both species the hoppers are g rega ri ous. genera­ mined by ventral examination of the abdo minal terminalia. tion s are not di screte, and all stages feed on a variety of Measurement was with an eyepiece micrometer to the nearest p l ants. He a lso noted that T. collaris s hows a very broad 0.16 mm; c ho ice of the left or righ t leg was according to con­ habitat range from humid forest to drier. more open forma­ ve nience . tions , wh il e T. c ristata is largel y abse nt from o pe n , dry for­ mations. It is this sparseness of biological information that justifies the present brief observations. All are fro m an area of cactus scrub outsid e the village of La Vecindad on the island of Margarita , Venez.uela, on 19 August 1997. Thi s was toward the end of a dry season th at lasts the greater part of the year I "6 on Margarita. Observation s were concentrated in a s hallow , .i \ dry gulch about 150 m long, lined with grasses, sedges, and z many herbaceou s broadleaf plant s but few trees. Hind-Femur Length (mm) M y attention was d raw n to T. collan's when I happened to see two adults in quick succession. I began a deliberate search and collected a ll adults that I could f ind . Figure 1: Frequency distribution of hind-femur length in 19 female and The on ly hoppers that I encountered were a s ing l e. dense 10 male hoppers of Tropidacris collaris from an aggregation. Tropidacris collaris 47 The size-freque ncy di stribution of hoppers indi cates that Thanks to C.S. Carbonell, F. Cerda and H.F. Rowe ll for crit­ these represent two ins ta rs, with males on average s li ghtl y ical comment on these observations. smaller th an same-i nstar females. Thi s conclu sion is corrob­ orated by consi sten t within-sex. differences in the form of the References abdominal terminalia bet ween th e two size-groups. The bas is of the strongly skewed sex-ratio in the sample of Carbone l l, C.S. 1984. Nomenclat ure and systematics of hoppers is not readily apparent. Given the sma ll data-set, I do Tropidacris a od EUlropidacris (O rthopte ra. Acridoidea. not discount the possibility that it is du e to sa mpling bias. Romaleidae). Norulae Naturae (Philadelphia) (461): I ­ Taken by themse lves , the observations of adults are cons is­ ll. tent with th e hypothesis of a hi g hly seasonal life cycle, with Carbonell, C.S. 1986. Revi sion of the neotropical genus males developing s omewhat faster than females and a con­ Tropidacris (Orthoptera. Acridoidea. Roma leidae. centration of breeding around the start of the rainy season. Romaleinae). Proc. Acad. lIat. Sci. Philadelphia 138:366- The presence of hoppers during the same time suggests that 402. T. collQr/'s breeds at two dist inct seasons on Ma rgarita. Rowe ll , H . F . 1983. Tropidacris crisrata (saltamonte 0 cha­ I regret that I was unable to extend these few opportunistic pulfn gigante. giant red-winged grasshopper). In D.H. observations and hope that they may stimulate someone else Janzen (ed.), Costa Rican Natural History. Univ. Chicago to undertake a more thorough s tudy. Press. Chi cago Pp. 772-773 .
Recommended publications
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Spreading of Heterochromatin and Karyotype Differentiation in Two Tropidacris Scudder, 1869 Species (Orthoptera, Romaleidae)
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 9(3): 435–450 (2015)Spreading of heterochromatin in Tropidacris 435 doi: 10.3897/CompCytogen.v9i3.5160 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Spreading of heterochromatin and karyotype differentiation in two Tropidacris Scudder, 1869 species (Orthoptera, Romaleidae) Marília de França Rocha1, Mariana Bozina Pine2, Elizabeth Felipe Alves dos Santos Oliveira3, Vilma Loreto3, Raquel Bozini Gallo2, Carlos Roberto Maximiano da Silva2, Fernando Campos de Domenico4, Renata da Rosa2 1 Departamento de Biologia, ICB, Universidade de Pernambuco, Recife, Pernambuco, Brazil 2 Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil 3 Depar- tamento de Genética, CCB, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil 4 Museu de Zoologia, Instituto de Biociência, Universidade de São Paulo, São Paulo, São Paulo, Brazil Corresponding author: Renata da Rosa ([email protected]) Academic editor: V. Gokhman | Received 22 April 2015 | Accepted 5 June 2015 | Published 24 July 2015 http://zoobank.org/12E31847-E92E-41AA-8828-6D76A3CFF70D Citation: Rocha MF, Pine MB, dos Santos Oliveira EFA, Loreto V, Gallo RB, da Silva CRM, de Domenico FC, da Rosa R (2015) Spreading of heterochromatin and karyotype differentiation in twoTropidacris Scudder, 1869 species (Orthoptera, Romaleidae). Comparative Cytogenetics 9(3): 435–450. doi: 10.3897/CompCytogen.v9i3.5160 Abstract Tropidacris Scudder, 1869 is a genus widely distributed throughout the Neotropical region where specia- tion was probably promoted by forest reduction during the glacial and interglacial periods. There are no cytogenetic studies of Tropidacris, and information allowing inference or confirmation of the evolutionary events involved in speciation within the group is insufficient.
    [Show full text]
  • Descrição Histológica Do Estomedeu De Tropidacris Collaris (Stoll, 1813) (Orthoptera: Romaleidae)
    Descrição histológica do estomedeu de Tropidacris collaris (Stoll, 1813) (Orthoptera: Romaleidae). 259 DESCRIÇÃO HISTOLÓGICA DO ESTOMEDEU DE TROPIDACRIS COLLARIS (STOLL, 1813) (ORTHOPTERA: ROMALEIDAE) M.K.C.M. Costa1, F.D. Santos1*, A.V.S. Ferreira1*, V.W. Teixeira2**, A.A.C. Teixeira2 1Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/no, CEP 52171-900, Recife, PE, Brasil. E-mail: [email protected] RESUMO A presente pesquisa foi desenvolvida no Laboratório de Histologia do Departamento de Morfologia e Fisiologia Animal da Universidade Federal Rural de Pernambuco (UFRPE), Recife, tendo como objetivo descrever a histologia do estomodeu (faringe, esôfago, inglúvio e proventrículo), de Tropidacris collaris (Stoll, 1813) (Orthoptera: Romaleidae), por meio da microscopia de luz, utilizando-se colorações especiais (Tricrômico de Mallory, Tricrômico de Gomori e P.A.S. – Ácido periódico de Schiff) e de rotina (Hematoxilina-Eosina). Os insetos foram obtidos da criação existente no Laboratório de Entomologia, do Departamento de Biologia, da UFRPE. O material coletado foi fixado em Boüin alcoólico e processado para inclusão em "paralast". Os resultados mostraram que os órgãos do estomodeu apresentam-se constituídos por tecido epitelial simples, recoberto por uma íntima contendo espículas, exceto no proventrículo, e tecido muscular estriado envolvendo esses órgãos. No proventrículo a camada epitelial se projeta para a luz formando 12 dobras maiores intercaladas por dobras menores. Não foi evidenciada a presença de tecido conjuntivo nos órgãos do estomodeu. PALAVRAS-CHAVE: Orthoptera, morfologia, estomodeu, Tropidacris collaris. ABSTRACT HISTOLOGIC DESCRIPTION OF THE FOREGUT OF TROPIDACRIS COLLARIS (STOLL, 1813) (ORTHOPTERA: ROMALEIDAE). The present research was developed in the Laboratorio de Histologia do Departamento de Morfologia e Fisiologia Animal da Universidade Federal Rural de Pernambuco (UFRPE), Recife.
    [Show full text]
  • New Canadian and Ontario Orthopteroid Records, and an Updated Checklist of the Orthoptera of Ontario
    Checklist of Ontario Orthoptera (cont.) JESO Volume 145, 2014 NEW CANADIAN AND ONTARIO ORTHOPTEROID RECORDS, AND AN UPDATED CHECKLIST OF THE ORTHOPTERA OF ONTARIO S. M. PAIERO1* AND S. A. MARSHALL1 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Abstract J. ent. Soc. Ont. 145: 61–76 The following seven orthopteroid taxa are recorded from Canada for the first time: Anaxipha species 1, Cyrtoxipha gundlachi Saussure, Chloroscirtus forcipatus (Brunner von Wattenwyl), Neoconocephalus exiliscanorus (Davis), Camptonotus carolinensis (Gerstaeker), Scapteriscus borellii Linnaeus, and Melanoplus punctulatus griseus (Thomas). One further species, Neoconocephalus retusus (Scudder) is recorded from Ontario for the first time. An updated checklist of the orthopteroids of Ontario is provided, along with notes on changes in nomenclature. Published December 2014 Introduction Vickery and Kevan (1985) and Vickery and Scudder (1987) reviewed and listed the orthopteroid species known from Canada and Alaska, including 141 species from Ontario. A further 15 species have been recorded from Ontario since then (Skevington et al. 2001, Marshall et al. 2004, Paiero et al. 2010) and we here add another eight species or subspecies, of which seven are also new Canadian records. Notes on several significant provincial range extensions also are given, including two species originally recorded from Ontario on bugguide.net. Voucher specimens examined here are deposited in the University of Guelph Insect Collection (DEBU), unless otherwise noted. New Canadian records Anaxipha species 1 (Figs 1, 2) (Gryllidae: Trigidoniinae) This species, similar in appearance to the Florida endemic Anaxipha calusa * Author to whom all correspondence should be addressed.
    [Show full text]
  • Wing-Based Communication in Carboniferous Insects
    ARTICLE https://doi.org/10.1038/s42003-021-02281-0 OPEN Sound vs. light: wing-based communication in Carboniferous insects ✉ Thomas Schubnel 1,5 , Frédéric Legendre 1,5, Patrick Roques2, Romain Garrouste1, Raphaël Cornette1, ✉ Michel Perreau3,4, Naïl Perreau4, Laure Desutter-Grandcolas1,5 & André Nel 1,5 Acoustic communication is well-known in insects since the Mesozoic, but earlier evidence of this behavior is rare. Titanoptera, an ‘orthopteroid’ Permian-Triassic order, is one of the few candidates for Paleozoic intersex calling interactions: some specimens had highly specialized broadened zones on the forewings, which are currently considered—despite inconclusive evidence—as ‘resonators’ of a stridulatory apparatus. Here we argue that the stridulatory 1234567890():,; apparatus hypothesis is unlikely because the Titanoptera lack a stridulatory file on their bodies, legs or wings. Instead, comparing these broadened zones with similar structures in extant locusts, flies, and fossil damselflies, we find evidence that the Titanoptera used their wings to produce flashes of light and/or crepitated sounds. Moreover, we describe the first Carboniferous (~310 Mya) Titanoptera, which exhibits such specialized zones, thus corre- sponding to the oldest record of wing communication in insects. Whether these commu- nication systems were used to attract sexual partners and/or escape predators remain to be demonstrated. 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, Paris Cedex 05, France. 2 Allée des Myosotis, Neuilly sur Marne, France. 3 IUT Paris Diderot, Université de Paris, 20 quater rue du département, Paris, France. 4 27 quai d’Anjou, Paris, France. 5These authors contributed equally: Thomas Schubnel, Frédéric Legendre, Laure Desutter-Grandcolas, André Nel.
    [Show full text]
  • The Significance of Body Size in the Orthoptera: a Review
    DOUGLAS W. WHITMANJournal of Orthoptera Research 2008,17(2): 117-134117 The significance of body size in the Orthoptera: a review DOUGLAS W. WHITMAN 4120 Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA. Email: [email protected] Abstract Why size and mass are important This review discusses body size and mass as they relate to the Orthoptera Size and mass are important because they correlate strongly (crickets, katydids, grasshoppers) and the Phasmatodea (walkingsticks). It with fitness, because they directly or indirectly influence nearly all addresses the expression, causes and consequences of size in these insects. biological phenomena, and because a great many biological and Topics include: methodological problems in body-size research, gravity physical factors influence size and mass. As such, size and mass vs surface forces, allometry and scaling, Dyar’s law, ontogenetic scaling, are determinants of fitness and targets of natural selection. For size-invariant traits and nonallometric scaling, the influence of size on researchers, size and mass are two easily obtained values that can physiology, function, behavior, life history, mating, fecundity, population encapsulate and predict a multitude of more difficult-to-obtain dynamics, ecology, and community, size-clines, Bergmann’s rule, sexual variables, such as metabolic rate, physiological condition, stress- size dimorphism, Rensch’s rule, protandry, the environmental, genetic, and resistance, immunocompetency, locomotor and dispersal abilities, physiological control of size, the evolution of size and the influence of size fecundity, life history, mating system and mating success, abundance, on evolution. Hypotheses are presented to explain why insects remain small in comparison to other taxa.
    [Show full text]
  • Cordyceps Locustiphila (Hypocreales: Cordycipitaceae) Infecting the Grasshopper Pest Tropidacris Collaris (Orthoptera: Acridoidea: Romaleidae)
    Nova Hedwigia Vol. 107 (2018) Issue 3–4, 349–356 Article Cpublished online February 6, 2018; published in print November 2018 Cordyceps locustiphila (Hypocreales: Cordycipitaceae) infecting the grasshopper pest Tropidacris collaris (Orthoptera: Acridoidea: Romaleidae) Sebastian A. Pelizza1,2*, María C.Scattolini1, Cristian Bardi1, Carlos E. Lange1,4, Sebastian A. Stenglein3 and Marta N. Cabello2,4 1 Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT La Plata-CONICET- UNLP, Boulevard 120 s/n entre Av. 60 y Calle 64, La Plata (1900), Argentina 2 Instituto de Botánica Carlos Spegazzini (FCNyM-UNLP), Calle 53 # 477, La Plata (1900), Argentina 3 Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC, Facultad de Agronomía de Azul, UNCPBA, Republica de Italia # 780, Azul (7300), Argentina 4 Comisión de Investigaciones Científicas de la Provincia de BuenosAires (CICPBA) With 3 figures Abstract: Cordyceps locustiphila is described, illustrated, and compared with a previous finding. This species was collected infecting Tropidacris collaris in the Yabotí biosphere reserve, Misiones province, Argentina. Until now, this entomopathogenic fungus has not been reported affecting T. collaris, and it is the first report for Argentina. From the cordyceps-like stromata of C. locustiphila it was possible to isolate for the first time the acremonium-like anamorph of this fungus. The identity of both, anamorph and teleomorph, was determined by morphological and molecular taxonomic studies, which challenges the recent new combination into Beauveria. Key words: entomogenous fungi, insect pathogens, tropical biodiversity. Introduction Fungi with cordyceps-like teleomorph are most diverse in the family Cordycipitaceae in terms of both number of known species and host range (Kobayasi 1941, Sung et al.
    [Show full text]
  • Radacridium (Romaleidae)
    Genetics and Molecular Biology, 36, 3, 336-340 (2013) Copyright © 2013, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Chromosome mapping of ribosomal genes and histone H4 in the genus Radacridium (Romaleidae) Allison Anjos, Vilma Loreto and Maria José de Souza Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil. Abstract In this study, two species of Romaleidae grasshoppers, Radacridium mariajoseae and R.nordestinum, were ana- lyzed after CMA3/DA/DAPI sequential staining and fluorescence in situ hybridization (FISH) to determine the location of the 18S and 5S rDNA and histone H4 genes. Both species presented karyotypes composed of 2n = 23, X0 with ex- + clusively acrocentric chromosomes. CMA3 blocks were detected after CMA3/DA/DAPI staining in only one medium size autosome bivalent and in the X chromosome in R. mariajoseae. On the other hand, all chromosomes, except the + L1 bivalent, of R. nordestinum presented CMA3 blocks. FISH analysis showed that the 18S genes are restricted to the X chromosome in R. mariajoseae, whereas these genes were located in the L2,S9 and S10 autosomes in R. nordestinum.InR. mariajoseae, the 5S rDNA sites were localized in the in L1 and L2 bivalents and in the X chromo- some. In R. nordestinum, the 5S genes were located in the L2,L3,M4 and M5 pairs. In both species the histone H4 genes were present in a medium size bivalent. Together, these data evidence a great variability of chromosome markers and show that the 18S and 5S ribosomal genes are dispersed in the Radacridium genome without a signifi- cant correlation.
    [Show full text]
  • Orthoptera: Acridoidea: Romaleidae) Asociado a Áreas Urbanas En La Ciudad De David, Chiriquí, Panamá
    Taeniopoda varipennis Rehn (ORTHOPTERA: ACRIDOIDEA: ROMALEIDAE) ASOCIADO A ÁREAS URBANAS EN LA CIUDAD DE DAVID, CHIRIQUÍ, PANAMÁ Collantes González1, Rubén D. Rubén D. Collantes González1 Resumen: Debido a la reciente migración de la ¨Langosta [email protected] Centroamericana¨ Schistocerca piceifrons piceifrons (Walker, Universidad de Panamá,, Panamá 1870) en algunos países de América Central, la población panameña está preocupada, por la posibilidad de que dicha plaga, que oficialmente aún no ha sido reportada para Revista Investigaciones Agropecuarias Panamá, se encuentre en el país. Sumado a ello, algunos Universidad de Panamá, Panamá medios de comunicación han hecho circular imágenes de ISSN-e: 2644-3856 una especie de saltamontes, vista con frecuencia en ciudades Periodicidad: Semestral vol. 3, núm. 1, 2020 como David, a la cual le atribuyeron equivocadamente ser la [email protected] “Langosta Centroamericana”. El objetivo del presente estudio fue identificar dicha especie de Orthoptera, encontrada con Recepción: 16 Agosto 2020 Aprobación: 08 Septiembre 2020 frecuencia en áreas urbanas de la Ciudad de David, Chiriquí, Panamá; además de actualizar la distribución conocida de dicha URL: http://portal.amelica.org/ameli/ especie en el país y conocer las plantas asociadas a la misma. jatsRepo/222/2221956001/index.html Para ello, se realizaron colectas en David y localidades próximas, como Alanje, Boquerón, Bugaba y el Corregimiento de Chiriquí. Se colectaron especímenes adultos del saltamontes, los cuales fueron montados e identificados posteriormente en Cerro Esta obra está bajo una Licencia Creative Commons Atribución- Punta, Chiriquí, utilizando como apoyo claves taxonómicas, NoComercial-CompartirIgual 4.0 Internacional. literatura especializada y se revisó dos colecciones entomológicas.
    [Show full text]
  • A Plant Hunter's Paradise Angel Falls and Auyántepui
    A Plant Hunter’s Paradise Angel Falls and Auyántepui Angel Falls ● Churún Vena ● Salto Angel Karen Angel, Editor Jimmie Angel Historical Project First Edition Copyright © 2012 Karen Angel. See page 55 for permission to use. All photographs are the property of the person or persons credited. INTRODUCTION A Plant Hunter’s Paradise - Angel Falls and Auyántepui focuses on the botanical aspects of the 28 June to 6 July 2012 “Tribute to Jimmie Angel Expedition” to Auyántepui and Angel Falls/Churún Vena/Salto Angel in Canaima National Park, State of Bolívar, Venezuela. The expedition was organized by Paul Graham Stanley of Angel-Eco Tours, Caracas, Venezuela and Karen Angel of the Jimmie Angel Historical Project, Eureka, California, U.S.A. This photo essay is a brief survey of the plants seen in Canaima National Park, Caracas and Ciudad Bolívar and is not intended to be inclusive. The sections titled Native Venezuela Botanicals (pages 13-21) and Botanicals Consumed and a few Zoological Specimens (pages 22-33) were identified by Venezuelans Jorge M. Gonzalez, an entomologist, in consultation with his botanist colleagues Balentina Milano, Angel Fernandez and Francisco Delascio. In a few cases, the photographs provided to the scientists were insufficient for a definitive identification; in these cases the identifications are “informed” based on insufficient information. Editor Karen Angel, who lives in Humboldt County, coastal northern California, uses her home region as a standard for comparison for the adaptability of the plants presented to other climate zones. Humboldt County is in USDA Hardiness Zone 9b: 25° F (-3.9°C) to 30° F (-1.1°C).
    [Show full text]
  • Chapter 7 SOUTH AMERICA
    Chapter 7 Chapter 7 SOUTH AMERICA: COLOMBIA Taxonomic Inventory Taxa and life stages consumed Coleoptera Beetles/beetle grubs Bruchidae (seed beetles) Caryobruchus sp. (scheelaea Bridwell?), larva Buprestidae (metallic woodborers) Euchroma gigantea Linnaeus, larva, adult Cerambycidae (long-horned beetles) Acrocinus longimanus (Linn.), larva Curculionidae (weevils, snout beetles) Anthonomus spp., adults Rhynchophorus (= Calandra) palmarum Linn., larva Passalidae (bess beetles) Passalid sp., larva, adult Scarabaeidae (scarab beetles) Ancognatha sp., larva Megaceras crassum (author?), adult Podischnus agenor Olivier, larva, adult Diptera Stratiomyidae (soldier flies) Chrysochlorina spp., larvae Hymenoptera Apidae (honeybees, bumblebees) Trigona clavipes (author?), larva Trigona trinidadensis (author?), larva Formicidae (ants) Atta cephalotes, Linn., winged female, soldier Atta laevigata (Smith), winged female, soldier Atta sexdens Linn., winged female, soldier Vespidae (wasps, hornets) Apoica thoracica du Buysson, pupa Mischocyttarus spp., larvae Polistes canadensis erythrocephalus Latreille, larva Polistes pacificus Fabr. ( = pacificus modestus Smith), larva Polistes ssp. (author?), larva Polistes versicolor (Olivier) ssp., larva Polybia ignobilis (Haliday), larva Polybia rejecta (Fabr.), pupa Agelaia ( = Stelopolybia) angulata (Fabr.), pupa Isoptera Termitidae (termites) Macrotermes sp., soldier Syntermes parallelus (author?), soldier, winged female 1 of 11 9/20/2012 2:00 PM Chapter 7 Syntermes snyderi (author?), soldier, winged female
    [Show full text]
  • Orthoptera: Caelifera)
    Insect Systematics & Evolution 44 (2013) 241–260 brill.com/ise Re-evaluation of taxonomic utility of male phallic complex in higher-level classification of Acridomorpha (Orthoptera: Caelifera) Hojun Song* and Ricardo Mariño-Pérez Department of Biology, University of Central Florida, 4000 Central Florida Boulevard Orlando, FL 32816, USA *Corresponding author, e-mail: [email protected] Published 25 October 2013 Abstract The current higher classification of the orthopteran superfamily group Acridomorpha is largely based on interpretation of male phallic structures. Internal male genitalia have been considered as an excellent taxonomic character because of a widespread belief that they are less subject to selective pressures from environment, and thus more stable than external characters. Furthermore, based on a notion that evolu- tion proceeds from simple to complex, early taxonomists who shaped the higher classification of Acridomorpha considered those groups with less differentiated and membranous phallic structures as primitive and used this notion to deduce a phylogeny of Acridomorpha. In this study, we test these ideas based on a cladistic analysis of male phallic structures and a character optimization analysis to assess the level of homoplasy and synapomorphy for those phallic characters that have been traditionally used for the Acridomorpha systematics. We also perform an independent test of the phylogenetic utility of male phal- lic structures based on a molecular phylogeny. We show that while some phallic structures have strong phylogenetic signal, many traditionally used characters are highly homoplasious. However, even those homoplasious characters are often informative in inferring relationships. Finally, we argue that the notion that evolution proceeds in increasing complexity is largely unfounded and difficult to quantify in the higher-level classification of Acridomorpha.
    [Show full text]