Massdot-FHWA Pilot Project Report: Climate Change and Extreme Weather Vulnerability Assessments and Adaptation Options for the Central Artery

Total Page:16

File Type:pdf, Size:1020Kb

Massdot-FHWA Pilot Project Report: Climate Change and Extreme Weather Vulnerability Assessments and Adaptation Options for the Central Artery MassDOT-FHWA Pilot Project Report: Climate Change and Extreme Weather Vulnerability Assessments And Adaptation Options for the Central Artery June 2015 Project Team: Kirk Bosma, P.E., Woods Hole Group, Inc. Ellen Douglas, P.E., Ph.D., UMass Boston Paul Kirshen, Ph.D., University of New Hampshire Katherin McArthur, MassDOT Steven Miller, MassDOT Chris Watson, M.Sc., UMass Boston Acknowledgements The authors wish to thank many people for their assistance in this project. They include, but are not limited to, Lt. Dave Albanese, Jeff Amero, John Anthony, Kathleen Baskin, Natalie Beauvais, David Belanger, Carolyn Bennett, John Bolduc, Dennis Carlberg, Bruce Carlisle, Joe Choiniere, Michael Chong, Lisa Dickson, Nate Dill, David Dinocco, Jeff Dusenbery, Kerry Emanuel, Rob Evans, Joe Famely, M. Leslie Fields, John Gendall, William A. Gode-von Aesch, Marybeth Groff, Robert Hamilton, Robyn Hannigan, Elizabeth Hanson, Arden Herrin, Eric Holmes, Nick Hugon, Mike Hutcheon, Bob Hutchen, Christian Jacqz, Charlie Jewell, Ron Killian, Leland Kirshen, Julia Knisel, Brian Knowles, Stephanie Kruel, Wes LaParl, Elise Leduc, Donna Lee, Vivien Li, Kevin Lopes, Rebecca Lupes, Kristen Mathieu, Rick McCullough, Lisa Grogan-McCulloch, Connor McKay, John McVann, Ellen Mecray, Stephen Morash, Dan Mullaly, Cynthia Nurmi, Paul Nutting, Daniel Nvule, Robbin Peach, William Pisano, Owen O’Riordan, Geoffrey Rainoff, Vandana Rao, Lawanda Riggs, Leo Scanlon, Stephen Estes- Smargiassi, Carl Spector, John Sullivan, Nadine Sweeney, Rob Thieler, Kevin Walsh, Peter Walworth, Sarah White, Norman Willard, John Winkelman, Steve Woelfel, Julie Wormser, Florence Wortzel, Arben Zhuri, Rich Zingarelli. Table of Contents Executive Summary ................................................................................. i Introduction ............................................................................................. 1 1.1 The Big Dig ..................................................................................................................... 1 1.2 Motivation for this Project ............................................................................................ 1 1.3 Project Objectives and Approach ................................................................................. 2 1.4 Overall Process ............................................................................................................... 4 1.5 A Comparison of this Study with Others ..................................................................... 6 Geographical Scope and Data Gathering ............................................. 9 2.1 Preliminary Data Acquisition ....................................................................................... 9 2.2 Tunnel Tour .................................................................................................................... 9 2.3 Initial Review of Assets ................................................................................................ 10 2.4 Mini-Pilot Asset Inventory .......................................................................................... 11 2.5 Preliminary Institutional Knowledge (IK) Meeting – July 26, 2013 ....................... 12 2.6 Maximo .......................................................................................................................... 13 2.7 MMIS............................................................................................................................. 14 2.8 First Institutional Knowledge (IK) Meeting – September 16, 2013 ......................... 14 2.9 Second Institutional Knowledge Meeting – October 22, 2013 ................................. 14 2.10 Geographical Scope of the Potentially Critical Areas of the CA/T ......................... 16 2.11 Technical Advisory Committee Meetings .................................................................. 16 2.12 MBTA Tunnel Tours ................................................................................................... 17 2.13 Stakeholder Engagement ............................................................................................. 19 2.14 Other Informational and Coordination Meetings ..................................................... 20 Asset Inventory and Elevation Surveys .............................................. 21 3.1 Detailed Asset Inventory (Field Visits) ....................................................................... 21 3.2 Elevation Surveys ......................................................................................................... 21 3.3 Assets and Facilities ..................................................................................................... 22 3.4 CA/T Database.............................................................................................................. 22 3.5 Structures and Structural Systems ............................................................................. 23 3.6 Geodatabase Development .......................................................................................... 26 Hydrodynamic Analysis ........................................................................ 28 4.1 Model Selection ............................................................................................................. 29 i MassDOT FHWA Pilot Project Report 4.2 Description of ADCIRC ............................................................................................... 33 4.3 Description of SWAN ................................................................................................... 34 4.4 Coupling Waves and Currents .................................................................................... 35 4.5 Model Development...................................................................................................... 36 4.6 Model Calibration and Validation .............................................................................. 49 4.7 Sea Level Rise and Storm Climatology ...................................................................... 57 4.8 Developing the Composite Probability Distribution of Storm-Related Flooding .. 75 4.9 BH-FRM Results .......................................................................................................... 77 Vulnerability Assessment ..................................................................... 95 5.1 Development of the Vulnerability Assessment Process ............................................ 95 5.2 Results of Vulnerability Assessment of Individual Structures ................................ 99 Adaptation ............................................................................................ 104 6.1 Local Adaptation Plan ............................................................................................... 104 6.2 Regional Adaptations ................................................................................................. 105 Conclusions and Lessons Learned ..................................................... 112 7.1 Conclusions ................................................................................................................. 112 7.2 Additional Notable Project Findings ........................................................................ 113 7.3 Lessons Learned ......................................................................................................... 113 7.4 Continuing Work ....................................................................................................... 116 References ............................................................................................ 117 ii MassDOT FHWA Pilot Project Report List of Figures Figure ES-1. Schematic of the Central Artery/Tunnel (CA/T) system. ....................................... i Figure 1-1. Schematic of the Central Artery/Tunnel (CA/T) system. ......................................... 3 Figure 1-2. Potential flooding in Boston due to an extreme storm surge (5 ft) on top of spring tide. Source: www.tbha.org. .................................................................................... 4 Figure 1-3. FHWA framework for assessing the vulnerability of transportation systems to climate change and extreme weather (source: Fig 1 from FHWA, 2012, pg 2). ... 5 Figure 2-1. On left, the assumed number of assets to be evaluated in this pilot project (~40) compared to, on right, a representation of the number of assets that actually existed within the system (on the order of thousands). .......................................... 11 Figure 2-2. Screen shot of photo gallery archiving system developed for this project. ........... 12 Figure 2-3. Example map provided by MassDOT District 6 staff at preliminary IK meetings. .................................................................................................................................. 13 Figure 2-4. Map created for first IK meeting. ........................................................................... 15 Figure 2-5. Magnified sections of maps used in IK meetings, showing annotations. ............. 16 Figure 4-1. Bathtub model results for Boston Harbor area showing a maximum water surface elevation of 12 feet NAVD88. ................................................................................. 29 Figure 4-2. Dynamic numerical model results for Boston Harbor area showing a maximum water surface elevation of 12 feet NAVD88. .......................................................... 29 Figure 4-3. Comparison typical
Recommended publications
  • Verification of a Multimodel Storm Surge Ensemble Around New York City and Long Island for the Cool Season
    922 WEATHERANDFORECASTING V OLUME 26 Verification of a Multimodel Storm Surge Ensemble around New York City and Long Island for the Cool Season TOM DI LIBERTO * AND BRIAN A. C OLLE School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York NICKITAS GEORGAS AND ALAN F. B LUMBERG Stevens Institute of Technology, Hoboken, New Jersey ARTHUR A. T AYLOR Meteorological Development Laboratory, NOAA/NWS, Office of Science and Technology, Silver Spring, Maryland (Manuscript received 21 November 2010, in final form 27 June 2011) ABSTRACT Three real-time storm surge forecasting systems [the eight-member Stony Brook ensemble (SBSS), the Stevens Institute of Technology’s New York Harbor Observing and Prediction System (SIT-NYHOPS), and the NOAA Extratropical Storm Surge (NOAA-ET) model] are verified for 74 available days during the 2007–08 and 2008–09 cool seasons for five stations around the New York City–Long Island region. For the raw storm surge forecasts, the SIT-NYHOPS model has the lowest root-mean-square errors (RMSEs) on average, while the NOAA-ET has the largest RMSEs after hour 24 as a result of a relatively large negative surge bias. The SIT-NYHOPS and SBSS also have a slight negative surge bias after hour 24. Many of the underpredicted surges in the SBSS ensemble are associated with large waves at an offshore buoy, thus illustrating the potential importance of nearshore wave breaking (radiation stresses) on the surge pre- dictions. A bias correction using the last 5 days of predictions (BC) removes most of the surge bias in the NOAA-ET model, with the NOAA-ET-BC having a similar level of accuracy as the SIT-NYHOPS-BC for positive surges.
    [Show full text]
  • Annual Report of the Performance and Asset Management Advisory Council Presented By
    Annual Report of the Performance and Asset Management Advisory Council presented by Performance and Asset Management Advisory Council Patricia Leavenworth, P.E., Chair November 2017 Annual Report of the Performance and Asset Management Advisory Council Executive Summary MassDOT’s progress in implementing asset management is keeping Massachusetts apace with Federal requirements. The Federal Highway Administration (FHWA) and Federal Transit Administration (FTA) have implemented final transportation asset management (TAM) rules in 2017 that impact how MassDOT measures and communicates the condition of its assets. Transportation Asset Management Plans FHWA and FTA rules require the Highway Division, the MBTA, the Rail and Transit Division, and each RTA to complete a transportation asset management plan (TAMP for Highway, TAM Plan for transit). The status on these plans is as follows: Highway | Will be submitted to FHWA in April, 2018. MBTA | Will be submitted to FTA by October, 2018. Rail | A consultant has been retained for delivery of an asset management plan for rail by February, 2018. This plan is not required by any Federal rule, but MassDOT is pursuing it to improve asset management at the agency. Transit | MassDOT is making progress toward submitting the TAM Plan for MassDOT’s in-house transit assets and those of its Federal Aid sub-recipients to FTA by October, 2018. RTAs | Each RTA is at a different stage in the development of their asset management plans, due to the FTA by October, 2018. MassDOT is ready to assist if asked. Performance and Condition Key performance and asset management findings of this report are summarized below by asset type and division.
    [Show full text]
  • Global Storm Tide Modeling with ADCIRC V55: Unstructured Mesh Design and Performance
    Geosci. Model Dev., 14, 1125–1145, 2021 https://doi.org/10.5194/gmd-14-1125-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance William J. Pringle1, Damrongsak Wirasaet1, Keith J. Roberts2, and Joannes J. Westerink1 1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA 2School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY, USA Correspondence: William J. Pringle ([email protected]) Received: 26 April 2020 – Discussion started: 28 July 2020 Revised: 8 December 2020 – Accepted: 28 January 2021 – Published: 25 February 2021 Abstract. This paper details and tests numerical improve- 1 Introduction ments to the ADvanced CIRCulation (ADCIRC) model, a widely used finite-element method shallow-water equation solver, to more accurately and efficiently model global storm Extreme coastal sea levels and flooding driven by storms and tides with seamless local mesh refinement in storm landfall tsunamis can be accurately modeled by the shallow-water locations. The sensitivity to global unstructured mesh design equations (SWEs). The SWEs are often numerically solved was investigated using automatically generated triangular by discretizing the continuous equations using unstructured meshes with a global minimum element size (MinEle) that meshes with either finite-volume methods (FVMs) or finite- ranged from 1.5 to 6 km. We demonstrate that refining reso- element methods (FEMs). These unstructured meshes can ef- lution based on topographic seabed gradients and employing ficiently model the large range in length scales associated a MinEle less than 3 km are important for the global accuracy with physical processes that occur in the deep ocean to the of the simulated astronomical tide.
    [Show full text]
  • Steps Towards Modeling Community Resilience Under Climate Change: Hazard Model Development
    Journal of Marine Science and Engineering Article Steps towards Modeling Community Resilience under Climate Change: Hazard Model Development Kendra M. Dresback 1,*, Christine M. Szpilka 1, Xianwu Xue 2, Humberto Vergara 3, Naiyu Wang 4, Randall L. Kolar 1, Jia Xu 5 and Kevin M. Geoghegan 6 1 School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, USA 2 Environmental Modeling Center, National Centers for Environmental Prediction/National Oceanic and Atmospheric Administration, College Park, MD 20740, USA 3 Cooperative Institute of Mesoscale Meteorology, University of Oklahoma/National Weather Center, Norman, OK 73019, USA 4 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 5 School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China 6 Northwest Hydraulic Consultants, Seattle, WA 98168, USA * Correspondence: [email protected]; Tel.: +1-405-325-8529 Received: 30 May 2019; Accepted: 11 July 2019; Published: 16 July 2019 Abstract: With a growing population (over 40%) living in coastal counties within the U.S., there is an increasing risk that coastal communities will be significantly impacted by riverine/coastal flooding and high winds associated with tropical cyclones. Climate change could exacerbate these risks; thus, it would be prudent for coastal communities to plan for resilience in the face of these uncertainties. In order to address all of these risks, a coupled physics-based modeling system has been developed that simulates total water levels. This system uses parametric models for both rainfall and wind, which only require essential information (e.g., track and central pressure) generated by a hurricane model.
    [Show full text]
  • Computer-Aided Construction Planning for Boston's Central Artery Project
    TRANSPORTATION RESEARCH RECORD 1282 57 Computer-Aided Construction Planning for Boston's Central Artery Project BRIAN R. BRENNER Some new computer applications are being developed for and Roule IA applied to the construction planning and traffic studies associated with the design of the Central Artery and Third Harbor Tunnel in Boston. This project is one of the most massive and complex urban highway projects in the country. It features an immersed­ tube harbor tunnel, depression of the downtown expressway in a cut-and-cover tunnel without interrupting service on the existing overhead viaduct, major new or revised urban interchanges, and long-span river crossings. The construction site, with its old exist­ ing and historic buildings and subways, permits limited clear­ ances, posing formidable challenges to engineers planning the work. The computer applications described include computerized composite mapping for archeological planning; analysis of mul­ tilevel curved-girder viaducts; transportation forecasting using highway network models; planning associated with the construc­ tion of the depressed Central Artery tunnels; and computer-aided 1-90 planning and mitigation measures for underpinning, protection of a subway tube, and other construction problems. The Central Artery and Third Harbor Tunnel (CA/THT) SOUTH BOSTON project is a massive urban highway improvement job being planned and designed in Boston. A key map is shown in Figure 1. The work features the addition of a third harbor tunnel, a •••• • • • • Artery/Tunnel Project new immersed tube tunnel that will cross Boston Harbor and extend I-90 to Logan Airport and Route lA. The six-lane FIGURE 1 Key map, CA/THT project.
    [Show full text]
  • Central Artery/Tunnel Project: a Precast Bonanza
    PART 1 Central Artery/Tunnel Project: A Precast Bonanza by Vijay Chandra, P.E. Anthony 1. Ricci, RE. Senior Vice President Chief Bridge Engineer Parsons Brinckerhoff Quade & Central Artery/Tunnel Project Douglas, Inc. Massachusetts Turnpike Authority New York, New York Boston, Massachusetts This article provides an overview of the monumental efforts of Massachusetts transportation officials, their engineering consultants, and multitudes of construction industry professionals to ease congestion, improve motorist safety, and address issues of environmental quality in the heart of Boston, Massachusetts. The Central Artery/Tunnel Project is the largest highway construction job ever undertaken in the United States, involving many diverse types of precast concrete construction. maj or transportation infrastructure undertaking, • Standardized temporary structures utilizing precast con billed as “The Big Dig,” is transforming traffic op crete elements. A erations in and around Boston, Massachusetts. This • Precast segmental box girders integrated into cast-in-place $13.2 billion project, the biggest and most complex trans columns to provide seismically resistant connections. portation system ever undertaken in the United States, is • Precast segmental boxes cut at a skew to connect them on significant not only in this country, but worldwide. Nu either side of straddle bents. merous innovative construction techniques are being used, The project has brought out the best that precast con including: crete technology has to offer — in many cases utilizing • Precast tunnels jacked under railroad embankments. cutting edge techniques — and has been of immeasurable • Deep soil mixing to stabilize land reclaimed from the value to New England’s precasting industry. Precasters, ocean. faced with many complex and daunting challenges, are • Precast concrete immersed tube tunnels.
    [Show full text]
  • Central Artery/Tunnel Project: Innovative Use of Precast Segmental Technology
    PART 2 Central Artery/Tunnel Project: Innovative Use of Precast Segmental Technology Paul J. Towell, P.E. Part 1 of this series of articles on Boston’s Central Senior Bridge Engineer Artery/Tunnel Project presented an overview of the Bechtel/Parsons Brinckerhoff scope of the work. This Part 2 article describes the New York, New York innovative use of precast concrete segments, as well as other construction techniques, on two major interchanges. he $13.2 billion Central Artery/Tunnel Project (CA/ T) is a major reconstruction of the urban interstate Peter A. Mainville Thighway through downtown Boston, Massachusetts. Assistant Resident Engineer In the last issue, an overview of the entire project was given. Bechtel/Parsons Brinckerhoff This second article on the project will focus on the inter- New York, New York changes that act as gateways to the project in various parts of the city. Most of the new structures are being built over and Vijay Chandra, P.E. around existing deteriorating interchanges that must carry Senior Vice President traffic during construction. As a result, maintenance of Parsons Brinckerhoff Quade & Douglas, Inc. traffic flow through existing interchanges and phased New York, New York construction of new interchanges were given priority. This, coupled with making the interchanges aesthetically pleasing and addressing urban planning issues, has been a challenge. Two major interchanges are located at the north and south ends of the I-93 corridor through Boston: the I-93/Route 1 Interchange in Charlestown (see Fig. 1) and the I-93/I-90 South Bay Interchange just south of downtown Boston (see Fig.
    [Show full text]
  • But How Do We Get to the Greenway?
    Proceedings of the Fábos Conference on Landscape and Greenway Planning Volume 4 Article 6 Issue 1 Pathways to Sustainability 2013 “But How Do We Get to the Greenway?”— A Multi-disciplinary, Multi-jurisdiction, Multimodal Strategy to Increase Connections to the Charles River Basin Cynthia Smith FASLA Vice President, Halvorson Design Partnership, Inc., Landscape Architecture and Planning, Boston MA Phil Goff EEDL AP Alta Planning + Design, Multi-modal Specialists, Boston, MA Christopher M. Greene RLA Senior Associates, Halvorson Design Partnership, Inc., Landscape Architecture and Planning, Boston MA Follow this and additional works at: https://scholarworks.umass.edu/fabos Part of the Botany Commons, Environmental Design Commons, Geographic Information Sciences Commons, Horticulture Commons, Landscape Architecture Commons, Nature and Society Relations Commons, and the Urban, Community and Regional Planning Commons Recommended Citation Smith, Cynthia FASLA; Goff, Phil LEED AP; and Greene, Christopher M. RLA (2013) "“But How Do We Get to the Greenway?”— A Multi-disciplinary, Multi-jurisdiction, Multimodal Strategy to Increase Connections to the Charles River Basin," Proceedings of the Fábos Conference on Landscape and Greenway Planning: Vol. 4 : Iss. 1 , Article 6. Available at: https://scholarworks.umass.edu/fabos/vol4/iss1/6 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Proceedings of the Fábos Conference on Landscape and Greenway Planning by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Smith et al.: Connections to the Charles River “But how do we get to the Greenway?”— a multi-disciplinary, multi-jurisdiction, multi- modal strategy to increase connections to the Charles River Basin Cynthia Smith, FASLA1, Phil Goff, LEED AP2, Christopher M.
    [Show full text]
  • Challenges and Prospects in Ocean Circulation Models
    Challenges and Prospects in Ocean Circulation Models The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fox-Kemper, Baylor, et al. “Challenges and Prospects in Ocean Circulation Models.” Frontiers in Marine Science 6 (February 2019): 65. © The Authors As Published http://dx.doi.org/10.3389/fmars.2019.00065 Publisher Frontiers Media SA Version Final published version Citable link https://hdl.handle.net/1721.1/125142 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ REVIEW published: 26 February 2019 doi: 10.3389/fmars.2019.00065 Challenges and Prospects in Ocean Circulation Models Baylor Fox-Kemper 1*, Alistair Adcroft 2,3, Claus W. Böning 4, Eric P. Chassignet 5, Enrique Curchitser 6, Gokhan Danabasoglu 7, Carsten Eden 8, Matthew H. England 9, Rüdiger Gerdes 10,11, Richard J. Greatbatch 4, Stephen M. Griffies 2,3, Robert W. Hallberg 2,3, Emmanuel Hanert 12, Patrick Heimbach 13, Helene T. Hewitt 14, Christopher N. Hill 15, Yoshiki Komuro 16, Sonya Legg 2,3, Julien Le Sommer 17, Simona Masina 18, Simon J. Marsland 9,19,20, Stephen G. Penny 21,22,23, Fangli Qiao 24, Todd D. Ringler 25, Anne Marie Treguier 26, Hiroyuki Tsujino 27, Petteri Uotila 28 and Stephen G. Yeager 7 1 Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, United States, 2 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, United States, 3 NOAA Geophysical
    [Show full text]
  • Dynamic Load Balancing for Predictions of Storm Surge and Coastal Flooding
    Environmental Modelling and Software 140 (2021) 105045 Contents lists available at ScienceDirect Environmental Modelling and Software journal homepage: http://www.elsevier.com/locate/envsoft Dynamic load balancing for predictions of storm surge and coastal flooding Keith J. Roberts a,1,*, J. Casey Dietrich b, Damrongsak Wirasaet a, William J. Pringle a, Joannes J. Westerink a a Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, USA b Dept. of Civil, Construction and Environmental Engineering, North Carolina State University, Mann Hall, USA ARTICLE INFO ABSTRACT Keywords: As coastal circulation models have evolved to predict storm-induced flooding, they must include progressively Storm surge more overland regions that are normally dry, to where now it is possible for more than half of the domain to be Coastal flooding needed in none or only some of the computations. While this evolution has improved real-time forecasting and Dynamic load balancing long-term mitigation of coastal flooding,it poses a problem for parallelization in an HPC environment, especially Finite element modeling for static paradigms in which the workload is balanced only at the start of the simulation. In this study, a dy­ Zoltan toolkit ParMETIS namic rebalancing of computational work is developed for a finite-element-based, shallow-water, ocean circu­ lation model of extensive overland flooding.The implementation has a low overhead cost, and we demonstrate a realistic hurricane-forced coastal
    [Show full text]
  • Esplanade Cultural Landscape Report - Introduction 1
    C U L T U R A L L A N D S C A P E R E P O R T T H E E S P L A N A D E B O S T O N , M A S S A C H U S E T T S Prepared for The Esplanade Association 10 Derne Street Boston, MA 02114 Prepared by Shary Page Berg FASLA 11 Perry Street Cambridge, MA 02139 April 2007 CONTENTS Introduction . 1 PART I: HISTORICAL OVERVIEW 1. Early History (to 1893) . 4 Shaping the Land Beacon Hill Flat Back Bay Charlesgate/Bay State Road Charlesbank and the West End 2. Charles River Basin (1893-1928) . 11 Charles Eliot’s Vision for the Lower Basin The Charles River Dam The Boston Esplanade 3. Redesigning the Esplanade (1928-1950) . 20 Arthur Shurcliff’s Vision: 1929 Plan Refining the Design 4. Storrow Drive and Beyond (1950-present) . 30 Construction of Storrow Drive Changes to Parkland Late Twentieth Century PART II: EXISTING CONDITIONS AND ANALYSIS 5. Charlesbank. 37 Background General Landscape Character Lock Area Playground/Wading Pool Area Lee Pool Area Ballfields Area 6. Back Bay. 51 Background General Landscape Character Boating Area Hatch Shell Area Back Bay Area Lagoons 7. Charlesgate/Upper Park. 72 Background General Landscape Character Charlesgate Area Linear Park 8. Summary of Findings . 83 Overview/Landscape Principles Character Defining Features Next Steps BIBLIOGRAPHY. 89 APPENDIX A – Historic Resources . 91 APPENDIX B – Planting Lists . 100 INTRODUCTION BACKGROUND The Esplanade is one of Boston’s best loved and most intensively used open spaces.
    [Show full text]
  • Map Template
    y t Parcel 12 e a e tr Proposed Boston Our member/sponsors Christopher 5 S 0 w h Museum Project / t 3 r A Columbus n o t n la o Racewalker N t e n s t o ic Park B • Massachusetts Convention Center Authority e A k l r v a • Vanasse Hangen Brustlin e n W G u e © Strider e City bk • Sam Park & Co. h Hall rket Parcel 14 t incy Ma • Massport Qu Park n f Whar Stroller o Long • CEMUSA G k Annual • Eaton Vance l a Meeting 9 • Equity Office t R w Stree • Friends of Post Office Square State Pavilion a 60 New England • Goody Clancy State • Heinz Family FoundationE h Parcel 15 Aquarium t treet i S 8 te S • Liz Levin & Company Co Sta Park urt u w S • McCourt Companies, Inc. tre 4 r bl f E e t Old State a c • Rubin & Rudman d e y House A e • Whole Foods Markets a r t C N t e o 7 w a I r n n d y Thank you r g i n a S r t Parcel 16 e b Don Kindsvatter | Map ree e W s t s e Nina Garfinkle | Garfinkle Design | Design Park e l S r t Ann Hershfang | Bob Sloane | Don Eunson | Text e r e G c e B n t r t o y A e a You can strengthen our voice t e d — S e eet tr tr d e Str S ee r e g r t ate k t Parcel 17 WalkBoston's advocacy on behalf of pedestrians began S W il o n Y n n M i o Park t n 4 t in 1990 when a handful of like-minded citizens decided t g n i e they would be more effective speaking out collectively e h s 5 K e a than individually.
    [Show full text]