ISSN 00954527, Cytology and Genetics, 2015, Vol. 49, No. 2, pp. 139–145. © Allerton Press, Inc., 2015. Original Ukrainian Text © I.P. Ozheredova, I.Yu. Parnikoza, O.O. Poronnik, I.A. Kozeretska, S.V. Demidov, V.A. Kunakh, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 2, pp. 72–79. Mechanisms of Antarctic Vascular Plant Adaptation to Abiotic Environmental Factors I. P. Ozheredovaa, I. Yu. Parnikozab, O. O. Poronnikb, I. A. Kozeretskaa, S. V. Demidova, and V. A. Kunakhb aTaras Shevchenko National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine email:
[email protected] bInstitute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, ul. Akademika Zabolotnoho 150, Kyiv, 03680 Ukraine Received November 21, 2013 Abstract—Native species of the Antarctic Deschampsia antarctica and Colobanthus quitensis exist at the limits of survival of vascular plants. Fundamental adaptations to abiotic environmental factors that qualitatively dis tinguish them from the other vascular plants of extreme regions, namely temperature, ultraviolet radiation hardiness, and their genetic plasticity in the changeable environment are discussed. Keywords: Deschampsia antarctica, Colobanthus quitensis, Antarctic, mechanisms of adaptation, stress pro tein, genome plasticity DOI: 10.3103/S0095452715020085 INTRODUCTION surface that is connected with its level of adaptation to Plant adaptation concerns hereditarily fixed con conditions of certain habitat. Pearlworts is rather rare, stitutive properties typical for plants, regardless of the and the reasons for its limited spread are not explained fact whether they are in stressful conditions not. These enough [4, 9–13]. properties become apparent on the structural and bio Populations of these vascular plants grow on poor chemical level as well.