Assembly Factors for the Membrane Arm of Human Complex I

Total Page:16

File Type:pdf, Size:1020Kb

Assembly Factors for the Membrane Arm of Human Complex I Assembly factors for the membrane arm of human complex I Byron Andrews, Joe Carroll, Shujing Ding, Ian M. Fearnley, and John E. Walker1 Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom Contributed by John E. Walker, October 14, 2013 (sent for review September 12, 2013) Mitochondrial respiratory complex I is a product of both the nuclear subunits in a fungal enzyme from Yarrowia lipolytica seem to be and mitochondrial genomes. The integration of seven subunits distributed similarly (12, 13). encoded in mitochondrial DNA into the inner membrane, their asso- The assembly of mitochondrial complex I involves building the ciation with 14 nuclear-encoded membrane subunits, the construc- 44 subunits emanating from two genomes into the two domains of tion of the extrinsic arm from 23 additional nuclear-encoded the complex. The enzyme is put together from preassembled sub- proteins, iron–sulfur clusters, and flavin mononucleotide cofactor complexes, and their subunit compositions have been characterized require the participation of assembly factors. Some are intrinsic to partially (14, 15). Extrinsic assembly factors of unknown function the complex, whereas others participate transiently. The suppres- become associated with subcomplexes that accumulate when as- sion of the expression of the NDUFA11 subunit of complex I dis- sembly and the activity of complex I are impaired by pathogenic rupted the assembly of the complex, and subcomplexes with mutations. Some assembly factor mutations also impair its activ- masses of 550 and 815 kDa accumulated. Eight of the known ex- ity (16). Other pathogenic mutations are found in all of the core trinsic assembly factors plus a hydrophobic protein, C3orf1, were subunits, and in 10 supernumerary subunits (NDUFA1, NDUFA2, associated with the subcomplexes. The characteristics of C3orf1, of NDUFA9,NDUFA10,NDUFA11,NDUFA12,NDUFB3, another assembly factor, TMEM126B, and of NDUFA11 suggest that NDUFB9, NDUFS4, and NDUFS6) (17–26). Those in supernu- they all participate in constructing the membrane arm of complex I. merary subunits NDUFA2, NDUFA10, NDUFS4, and NDUFS6 are associated with a reduced level of intact complex and accu- mitochondria | respiratory chain | NADH:ubiquinone oxidoreductase mulation of subcomplexes, indicating a defect in assembly or sta- CELL BIOLOGY bility of the complex, or both. n mammalian mitochondria, complex I (NADH:ubiquinone As described here, suppression of the expression of the su- Ioxidoreductase) provides the entry point for electrons from pernumerary membrane subunit NDUFA11 impairs assembly of NADH into the electron transport chain. For each two electrons complex I, leading to the accumulation of subcomplexes with transferred from NADH to ubiquinone, four protons are ejected estimated molecular masses of 550 and 815 kDa associated with from the mitochondrial matrix, thereby contributing to the pro- eight known assembly factors, plus three other proteins, espe- ton motive force across the inner membrane (1). The mamma- cially C3orf1. NDUFA11 has the characteristics of an intrinsic lian enzyme has 44 subunits, with a combined molecular mass of assembly factor for complex I and together with C3orf1 and about 1 MDa, assembled into an L-shaped complex, with one another extrinsic assembly factor TMEM126B (27), they prob- arm embedded in the inner membrane and the other protruding ably help to assemble the membrane arm of the complex. into the matrix of the organelle (2–4). Seven hydrophobic sub- units (ND1–ND6 and ND4L) of the membrane arm of NADH Results dehydrogenase (complex I) are encoded in mitochondrial DNA, Suppression of Expression of NDUFA11. The experiment, conducted and synthesized on mitochondrial ribosomes (5). The remainder in 143B cells, had three effects. First, cellular oxygen consump- are nuclear gene products, made in the cytoplasm and imported tion linked to complex I was reduced by two-thirds (Fig. 1), and into mitochondria (6). The seven proteins encoded in mito- chondrial DNA and seven nuclear-encoded subunits conserved Significance in prokaryotic complexes I, constitute the catalytic cores of the membrane and peripheral arms, respectively (1). The latter Mammalian complex I, the largest and most complicated en- contains binding sites for NADH, the primary electron acceptor zyme of the mitochondrial respiratory chain, is an L-shaped FMN, and seven iron–sulfur clusters that link FMN and the assembly of 44 proteins with one arm in the mitochondrial terminal electron acceptor, ubiquinone, bound at the juncture matrix and the orthogonal arm buried in the inner membrane. between the peripheral and membrane arms (1, 7). The mem- It is put together from preassembled modules. This inves- brane arm has four antiporter-like domains that probably provide tigation concerns the little studied process of the assembly of pathways for translocating protons (1). The remaining 30 so- the membrane arm module from proteins emanating from both called supernumerary subunits of mammalian complex I have no nuclear and mitochondrial genomes. We have identified two direct role in catalysis (2). Their functions are mostly unknown, membrane protein assembly factors C3orf1 and TMEM126B, not but they may be involved in assembly, stability, or regulation of found in the mature complex, that help this process by putting the complex (2, 8). together two membrane arm subcomplexes. Defects in the as- There is no atomic structure for any eukaryotic complex I, but sembly of complex I are increasingly being associated with human the arrangement and folds of the 14 core subunits in the mam- pathologies. malian enzyme are likely to be closely similar to those of bacterial orthologs, with the supernumerary subunits attached peripher- Author contributions: B.A. and J.E.W. designed research; B.A., J.C., S.D., and I.M.F. per- ally around the core (2, 9). The distribution of supernumerary formed research; B.A., J.C., S.D., I.M.F., and J.E.W. analyzed data; and J.E.W. wrote the subunits in bovine complex I is known from the subunit com- paper. positions of subcomplexes (3, 10, 11). Subcomplex Iλ is the pe- The authors declare no conflict of interest. ripheral arm, subcomplex Iα is a combination of Iλ and the Freely available online through the PNAS open access option. adjacent region of the membrane arm, subcomplex Iβ is the 1To whom correspondence should be addressed. E-mail: [email protected]. γ distal region of the membrane arm, and subcomplex I is an- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. other fragment from the membrane arm. The supernumerary 1073/pnas.1319247110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1319247110 PNAS Early Edition | 1of6 Downloaded by guest on September 24, 2021 A protein profile of complex I accompanying the eightfold reduction control of NDUFA11 correspond to additional proteins associated with P < 0.01 incompletely assembled complex I. Eight known assembly factors, NDUFA11-1 NDUFAF1–4, ACAD9, ECSIT, FOXRED1, and TMEM126B were associated with the NDUFA11-deficient subcomplexes (Fig. NDUFA11-2 3andDataset S1). FOXRED1 has been designated as an as- sembly factor from genetic and functional data (29), but here its 0 0.2 0.4 0.6 0.8 direct association with assembly intermediates of complex I has OCR (fmol/min/cell) been demonstrated. Three other proteins, C3orf1, ATP5SL, and B DNAJC11 were found. C3orf1 and ATP5SL have no ascribed control functions, whereas DNAJC11 belongs to the Hsp40 chaperone family. Both C3orf1 and TMEM126B colocalized with Mito- NDUFA11-1 Tracker, and so they are intrinsic mitochondrial proteins (Fig. S3). NDUFA11-2 Ablation of C3orf1, TMEM126B, ATP5SL, and DNAJC11 and Assembly of Complex I. The suppression of expression of C3orf1 or TMEM126B 3210 4 reduced both the cellular oxygen consumption, and the level of OCR (fmol/min/cell) intact complex I (Fig. 4), and subcomplexes of 315 and 370 kDa Fig. 1. Oxygen consumption of 143B cells with ablated NDUFA11. Oxygen accumulated. They were detected with antibodies against the pe- consumption rate (OCR) 96 h after transfection with two siRNAs (NDUFA11-1 ripheral arm and the membrane arm component NDUFB8, re- and -2, each 30 nM) against NDUFA11 (black and dark gray) compared with spectively. The accumulation of the 370-kDa subcomplex was control cells (light gray). (A) Complex-I–dependent OCR of 143B cells de- concomitant with a reduction in a 550-kDa subcomplex (Fig. 4), termined by subtraction of rotenone-inhibited OCR values from initial val- presumably the same subcomplex accompanying suppression of ues. (B) Addition of rotenone and duroquinol and OCR derived from expression of NDUFA11 (Fig. 2). Also, when TMEM126B was activities of complexes III and IV. Error bars are SD. suppressed, the levels of both complexes III and IV increased (Fig. 4). As the analyses were performed in the presence of n-dodecyl- β-D-maltoside, which dissociates respiratory complexes into in- the effect was bypassed by addition of the complex III substrate, dividual enzymes, the increase in complexes III and IV is not due duroquinol. Second, the mitochondrial network observed in to their release from supercomplexes. In their experiments on control cells became fragmented (Fig. S1). Third, the amount of TMEM126B, Heide et al. reported an increase in complex III, but intact complex I was reduced, and subcomplexes with molecular not of complex IV (27). masses of 815 and 550 kDa accumulated (Fig. 2). Previously The complex I assembly factors NDUFAF3, ACAD9, and known as the 830- and 650-kDa subcomplexes, respectively (16), NDUFAF2 are associated with subassemblies with masses of their sizes have been reestimated (Fig. S2). This accumulation of 400, 460, and 830 kDa, respectively (15). Based on the reesti- the 815-kDa complex is similar to the effects of mutation of mated masses of subcomplexes (Fig. S2) they probably corre- NDUFS4 or NDUFAF2 (28), but the accumulation of the 550- spond to the 315-, 370-, and 815-kDa subcomplexes, respectively, kDa complex has not been reported.
Recommended publications
  • Increased COUP-TFII Expression in Adult Hearts Induces Mitochondrial Dysfunction Resulting in Heart Failure
    ARTICLE Received 9 Mar 2015 | Accepted 30 Jul 2015 | Published 10 Sep 2015 DOI: 10.1038/ncomms9245 OPEN Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure San-Pin Wu1,2, Chung-Yang Kao1, Leiming Wang1, Chad J. Creighton3,4, Jin Yang5, Taraka R. Donti6, Romain Harmancey7, Hernan G. Vasquez7, Brett H. Graham6,8, Hugo J. Bellen6,8, Heinrich Taegtmeyer7, Ching-Pin Chang5, Ming-Jer Tsai1,8 & Sophia Y. Tsai1,8 Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP- TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. 1 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. 2 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130, USA.
    [Show full text]
  • NDUFAF1 Antibody
    Efficient Professional Protein and Antibody Platforms NDUFAF1 Antibody Basic information: Catalog No.: UPA63763 Source: Rabbit Size: 50ul/100ul Clonality: monoclonal Concentration: 1mg/ml Isotype: Rabbit IgG Purification: Protein A purified. Useful Information: WB:1:1000 ICC:1:50-1:200 Applications: IHC:1:50-1:200 FC:1:50-1:100 Reactivity: Human Specificity: This antibody recognizes NDUFAF1 protein. Immunogen: Synthetic peptide within C terminal human NDUFAF1. This gene encodes a complex I assembly factor protein. Complex I (NADH-ubiquinone oxidoreductase) catalyzes the transfer of electrons from NADH to ubiquinone (coenzyme Q) in the first step of the mitochondrial respiratory chain, resulting in the translocation of protons across the inner mitochondrial membrane. The encoded protein is required for assembly of complex I, and mutations in this gene are a cause of mitochondrial complex I deficiency. Alternatively spliced transcript variants have been observed for Description: this gene, and a pseudogene of this gene is located on the long arm of chromosome 19. Part of the mitochondrial complex I assembly (MCIA) com- plex. The complex comprises at least TMEM126B, NDUFAF1, ECSIT, and ACAD9. Interacts with ECSIT. Interacts with ACAD9. At early stages of com- plex I assembly, it is found in intermediate subcomplexes that contain dif- ferent subunits including NDUFB6, NDUFA6, NDUFA9, NDUFS3, NDUFS7, ND1, ND2 and ND3 Uniprot: Q9Y375 Human BiowMW: 38 kDa Buffer: 1*TBS (pH7.4), 1%BSA, 50%Glycerol. Preservative: 0.05% Sodium Azide. Storage: Store at 4°C short term and -20°C long term. Avoid freeze-thaw cycles. Note: For research use only, not for use in diagnostic procedure.
    [Show full text]
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Molecular Mechanism of ACAD9 in Mitochondrial Respiratory Complex 1 Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425795; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular mechanism of ACAD9 in mitochondrial respiratory complex 1 assembly Chuanwu Xia1, Baoying Lou1, Zhuji Fu1, Al-Walid Mohsen2, Jerry Vockley2, and Jung-Ja P. Kim1 1Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA 2Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Abstract ACAD9 belongs to the acyl-CoA dehydrogenase family, which catalyzes the α-β dehydrogenation of fatty acyl-CoA thioesters. Thus, it is involved in fatty acid β-oxidation (FAO). However, it is now known that the primary function of ACAD9 is as an essential chaperone for mitochondrial respiratory complex 1 assembly. ACAD9 interacts with ECSIT and NDUFAF1, forming the mitochondrial complex 1 assembly (MCIA) complex. Although the role of MCIA in the complex 1 assembly pathway is well studied, little is known about the molecular mechanism of the interactions among these three assembly factors. Our current studies reveal that when ECSIT interacts with ACAD9, the flavoenzyme loses the FAD cofactor and consequently loses its FAO activity, demonstrating that the two roles of ACAD9 are not compatible. ACAD9 binds to the carboxy-terminal half (C-ECSIT), and NDUFAF1 binds to the amino-terminal half of ECSIT. Although the binary complex of ACAD9 with ECSIT or with C-ECSIT is unstable and aggregates easily, the ternary complex of ACAD9-ECSIT-NDUFAF1 (i.e., the MCIA complex) is soluble and extremely stable.
    [Show full text]
  • High-Throughput, Pooled Sequencing Identifies Mutations in NUBPL And
    ARTICLES High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency Sarah E Calvo1–3,10, Elena J Tucker4,5,10, Alison G Compton4,10, Denise M Kirby4, Gabriel Crawford3, Noel P Burtt3, Manuel Rivas1,3, Candace Guiducci3, Damien L Bruno4, Olga A Goldberger1,2, Michelle C Redman3, Esko Wiltshire6,7, Callum J Wilson8, David Altshuler1,3,9, Stacey B Gabriel3, Mark J Daly1,3, David R Thorburn4,5 & Vamsi K Mootha1–3 Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes that are involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing and experimental validation to uncover the molecular basis of mitochondrial complex I disorders. We created seven pools of DNA from a cohort of 103 cases and 42 healthy controls and then performed deep sequencing of 103 candidate genes to identify 151 rare variants that were predicted to affect protein function. We established genetic diagnoses in 13 of 60 previously unsolved cases using confirmatory experiments, including cDNA complementation to show that mutations in NUBPL and FOXRED1 can cause complex I deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can be used to identify causal mutations in individual cases. Complex I of the mitochondrial respiratory chain is a large ~1-MDa ­assembly factors are probably required, as suggested by the 20 factors macromolecular machine composed of 45 protein subunits encoded necessary for assembly of the smaller complex IV9 and by cohort by both the nuclear and mitochondrial (mtDNA) genomes.
    [Show full text]
  • Analysis of Translating Mitoribosome Reveals Functional Characteristics of Translation in Mitochondria of Fungi
    ARTICLE https://doi.org/10.1038/s41467-020-18830-w OPEN Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi Yuzuru Itoh 1,2,4, Andreas Naschberger1,4, Narges Mortezaei1,4, Johannes M. Herrmann 3 & ✉ Alexey Amunts 1,2 1234567890():,; Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly inter- mediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF1) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation. 1 Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden. 2 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Solna, Sweden. 3 Cell Biology, University
    [Show full text]
  • Inborn Errors of Metabolism Test Requisition
    LABORATORY OF GENETICS AND GENOMICS Mailing Address: For local courier service and/or inquiries, please contact 513-636-4474 • Fax: 513-636-4373 3333 Burnet Avenue, Room R1042 www.cincinnatichildrens.org/moleculargenetics • Email: [email protected] Cincinnati, OH 45229 INBORN ERRORS OF METABOLISM TEST REQUISITION All Information Must Be Completed Before Sample Can Be Processed PATIENT INFORMATION ETHNIC/RACIAL BACKGROUND (Choose All) Patient Name: ___________________ , ___________________ , ________ European American (White) African-American (Black) Last First MI Native American or Alaskan Asian-American Address: ____________________________________________________ Pacific Islander Ashkenazi Jewish ancestry ____________________________________________________ Latino-Hispanic _____________________________________________ Home Phone: ________________________________________________ (specify country/region of origin) MR# __________________ Date of Birth ________ / ________ / _______ Other ____________________________________________________ (specify country/region of origin) Gender: Male Female BILLING INFORMATION (Choose ONE method of payment) o REFERRING INSTITUTION o COMMERCIAL INSURANCE* Insurance can only be billed if requested at the time of service. Institution: ____________________________________________________ Policy Holder Name: _____________________________________________ Address: _____________________________________________________ Gender: ________________ Date of Birth ________ / ________ / _______
    [Show full text]
  • Assembly Factors for the Membrane Arm of Human Complex I
    Assembly factors for the membrane arm of human complex I Byron Andrews, Joe Carroll, Shujing Ding, Ian M. Fearnley, and John E. Walker1 Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom Contributed by John E. Walker, October 14, 2013 (sent for review September 12, 2013) Mitochondrial respiratory complex I is a product of both the nuclear subunits in a fungal enzyme from Yarrowia lipolytica seem to be and mitochondrial genomes. The integration of seven subunits distributed similarly (12, 13). encoded in mitochondrial DNA into the inner membrane, their asso- The assembly of mitochondrial complex I involves building the ciation with 14 nuclear-encoded membrane subunits, the construc- 44 subunits emanating from two genomes into the two domains of tion of the extrinsic arm from 23 additional nuclear-encoded the complex. The enzyme is put together from preassembled sub- proteins, iron–sulfur clusters, and flavin mononucleotide cofactor complexes, and their subunit compositions have been characterized require the participation of assembly factors. Some are intrinsic to partially (14, 15). Extrinsic assembly factors of unknown function the complex, whereas others participate transiently. The suppres- become associated with subcomplexes that accumulate when as- sion of the expression of the NDUFA11 subunit of complex I dis- sembly and the activity of complex I are impaired by pathogenic rupted the assembly of the complex, and subcomplexes with mutations. Some assembly factor mutations also impair its activ- masses of 550 and 815 kDa accumulated. Eight of the known ex- ity (16). Other pathogenic mutations are found in all of the core trinsic assembly factors plus a hydrophobic protein, C3orf1, were subunits, and in 10 supernumerary subunits (NDUFA1, NDUFA2, associated with the subcomplexes.
    [Show full text]
  • Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology
    [Show full text]
  • Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis
    International Journal of Molecular Sciences Article Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis Helena Kratochvílová 1,2, Miloš Mráz 2,3, Barbora J. Kasperová 3, Daniel Hlaváˇcek 4 , Jakub Mahrík 5 , Ivana La ˇnková 3, Anna Cinkajzlová 1,2, ZdenˇekMatloch 6, Zde ˇnkaLacinová 1,2, Jaroslava Trnovská 1, Peter Ivák 4, Peter Novodvorský 1,3,7, Ivan Netuka 4 and Martin Haluzík 1,2,3,* 1 Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] (H.K.); [email protected] (A.C.); [email protected] (Z.L.); [email protected] (J.T.); p.novodvorsky@sheffield.ac.uk (P.N.) 2 First Faculty of Medicine, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, U Nemocnice 499/2, 128 08 Nové Mˇesto,Prague, Czech Republic; [email protected] 3 Department of Diabetes, Institute for Clinical and Experimental Medicine, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] (B.J.K.); [email protected] (I.L.) 4 Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] (D.H.); [email protected] (P.I.); [email protected] (I.N.) 5 Department of Anesthesia and Resuscitation, Institute for Clinical and Experimental Medicine, Citation: Kratochvílová, H.; Mráz, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] 6 Shackleton Department of Anaesthesia UHS NHS UK, Southampton General Hospital, M.; Kasperová, B.J.; Hlaváˇcek,D.; Southampton SO14, UK; [email protected] Mahrík, J.; Laˇnková,I.; Cinkajzlová, 7 Department of Oncology & Metabolism, University of Sheffield, Sheffield S0114, UK A.; Matloch, Z.; Lacinová, Z.; * Correspondence: [email protected]; Tel.: +42-03-605-4108; Fax: +42-02-2496-5719 Trnovská, J.; et al.
    [Show full text]
  • FOXRED1 (D-4): Sc-377010
    SANTA CRUZ BIOTECHNOLOGY, INC. FOXRED1 (D-4): sc-377010 BACKGROUND APPLICATIONS FOXRED1 (FAD-dependent oxidoreductase domain-containing protein 1), also FOXRED1 (D-4) is recommended for detection of FOXRED1 of human origin known as FP634, is a 486 amino acid single-pass membrane protein. Utilizing by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), FAD as a cofactor, FOXRED1 may act as a chaperone protein essential for the immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell function of mitochondrial complex I. Mutations to FOXRED1 may result in lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- mitochondrial complex I deficiency (MT-C1D), which results in a wide range 1:500), immunohistochemistry (including paraffin-embedded sections) of clinical maladies from lethal neonatal disease to adult onset neurodegen- (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA erative disorders. Common phenotypes of MT-C1D include cardiomyopathy, (starting dilution 1:30, dilution range 1:30-1:3000). liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some Suitable for use as control antibody for FOXRED1 siRNA (h): sc-96988, forms of Parkinson disease. FOXRED1 exists as three alternatively spliced FOXRED1 shRNA Plasmid (h): sc-96988-SH and FOXRED1 shRNA (h) isoforms and is encoded by a gene mapping to human chromosome 11q24.2. Lentiviral Particles: sc-96988-V. With approximately 135 million base pairs and 1,400 genes, chromosome 11 makes up around 4% of human genomic DNA and is considered a gene and Molecular Weight of FOXRED1 isoform 1: 54 kDa.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]