Harmonization of Regulations for Invertebrate Biocontrol Agents in Europe: Progress, Problems and Solutions J

Total Page:16

File Type:pdf, Size:1020Kb

Harmonization of Regulations for Invertebrate Biocontrol Agents in Europe: Progress, Problems and Solutions J J. Appl. Entomol. MINI REVIEW Harmonization of regulations for invertebrate biocontrol agents in Europe: progress, problems and solutions J. Bale School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK Keywords Abstract biological control, environmental risk assessment, Europe, regulation The use of non-native invertebrate biological control agents (IBCAs) in Europe is not covered by a Directive equivalent to that which regulates Correspondence biocontrol with microorganisms or the genetic modification of crop Jeffrey Bale (corresponding author), School of plants. Regulation is at the discretion of individual member states and Biosciences, University of Birmingham, largely derived from national legislation on pesticides, plant health or Edgbaston, Birmingham B15 2TT, UK. environmental protection. There is no EU country with regulation of E-mail: [email protected] IBCAs that requires information on the microbial symbiont content of Received: September 29, 2010; accepted: candidate species, and in the absence of horizontal transfer under natu- December 23, 2010. ral conditions, this policy is unlikely to change. Although there have been few reported negative effects linked to the import and release of doi: 10.1111/j.1439-0418.2011.01611.x IBCAs, a number of countries have introduced or revised their regula- tory frameworks in recent years. This article reviews major develop- ments in the regulation and environmental risk assessment (ERA) of IBCAs in Europe over the last 10 years including: the fragmented pat- tern of regulation between countries, variation in information require- ments for release licences, format and methods of ERA for different taxonomic groups of IBCAs, use and updating of the European Plant Protection Organisation Positive List, sources of expert advice on ERA data, communication between IBCA regulators, and options for the provision of international leadership to coordinate regulatory and ERA-related issues with IBCA-based biocontrol in Europe. home range of introduced pests with the intention Introduction of permanent establishment in the area or country The modern use of biological control with inverte- of release (see Bale et al. 2008 for examples). It is brate agents (insects, mites and nematodes) is widely also a feature of note that attempts at classical bio- regarded as having its first success in the citrus orch- control of insect and mite pests in Europe have been ards of California over 100 years ago with the con- largely unsuccessful, with the recent release of the trol of the introduced scale insect Iceryae purchasi by psyllid Aphalara itadori as a control for the Japanese the predatory ladybird Rodolia cardinalis and the dip- knotweed (Polygonum cuspidatum) in the UK also teran parasitoid Cryptochaetum iceryae, both of which being one of few weed biocontrol schemes in a were collected from the native distribution of the European country (Shaw et al. 2009). pest in Australia. In this respect, it is interesting to Over the last 50 years, systems of biocontrol have note that biological control pre-dates the use of diversified to include ‘open field’ and glasshouse chemical pesticides upon which insect pest manage- crops where there is no expectation or intention of ment came to depend for much of the latter half of long-term establishment (augmentative and inunda- the 20th century. A number of the other ‘early’ suc- tive control), and the manipulation of ecosystems to cesses in biocontrol were also ‘classical’ schemes in attract and increase the local abundance of native which natural enemies were collected from the natural enemies (conservation control). In general, J. Appl. Entomol. 135 (2011) 503–513 ª 2011 Blackwell Verlag, GmbH 503 Regulation of invertebrate biocontrol agents in Europe J. Bale classical and conservation control are developed, may be irreversible, it is necessary to take a precau- monitored and maintained by public funding (gov- tionary approach, to include an environmental risk ernment agencies, research institutes and universi- assessment of the candidate organism. ties), whereas augmentative and inundative control At the present time, there are systems of have become commercialized, with a number of regulation in place for the import and release of companies producing large numbers of organisms for non-native biocontrol agents in the USA, Canada, mass release. In effect, there is little or no financial Australia and New Zealand (see Hunt et al. 2007 for return on classical control where there would be no a review). The situation in Europe is more compli- recurrent market for successful agents. cated and is evolving: some countries have regula- Biocontrol often involves the movement of species tion (UK, The Netherlands, Switzerland), others do around the world, from sites of collection, via a pro- not (France, Italy) and some have plans to introduce duction facility, to sites of release. In some schemes, regulation (e.g. in the Flanders region of Belgium). the search for natural enemies is focused on There is therefore nothing to prevent a species being co-evolved predators or parasitoids of the target spe- ‘prohibited’ for release after an environmental risk cies in its country or region of origin, as is the case assessment in one country, but then released in a for many classical programmes. For augmentative neighbouring country which has no regulation. To and inundative control, candidate agents may be col- some extent, that has been the situation with the lected on the basis of taxonomic and related predatory ladybird Harmonia axyridis. This species behavioural traits – for example, predatory mites was first released in Europe in trials on hops in that attack other acarine prey – rather than a pur- France about 20 years ago – a country with no regu- poseful attempt to ‘reunite’ natural enemies with lation – and then commercially released in The their hosts and prey in a new environment. Netherlands and Belgium from 1996 to 2004; and The scale of the release of non-native natural ene- although it was never subject to a risk assessment at mies has been quantified by van Lenteren et al. that time, a retrospective analysis (van Lenteren (2006): 5000 introductions of approximately 2000 et al. 2008) has shown that because of its winter species into 196 countries or islands over the past cold tolerance, polyphagy, and dispersal potential, 120 years. The fact that is most striking about these licences for release were not likely to have been figures is that many of these releases were made granted (see also De Clercq and Bale 2011). How- prior to the era of legislation, regulation and risk ever, under the currently fragmented landscape of assessment of biocontrol agents, and yet, there have regulation in Europe, there is nothing to prevent a been remarkably few reports of negative environ- recurrence of this type of release. mental effects. At the same time, and particularly Over the last 20–30 years, with an increasing over the last 30 years, the perception that non- emphasis on environmental protection, and the per- native species pose a risk to native flora and fauna ception if not the reality of risks posed by non-native has gained ground, to the extent that organisms that biocontrol agents, various international organizations biocontrol companies describe collectively as ‘benefi- have produced guidance on the risk assessment of cials’, have a status in some countries analogous to such species, including the European Plant Protec- invasive aliens. tion Organisation (EPPO), the Food and Agriculture The debate about the environmental safety of Organisation of the United Nations (FAO) and the non-native biocontrol agents has become polarized Organisation of Economic Cooperation and Develop- into two broadly distinct and opposing schools of ment (OECD) (see Bigler et al. 2005 for details). thought. The first argues that organisms have been Developments in Europe, particularly over the last transported around the world through international decade, have stemmed from the realization that the trade for hundreds of years and that biocontrol is an European Commission had no intention of introduc- extension of this ‘natural’ process; there have been ing a Directive for the regulation of invertebrate bio- very few reports of negative environmental effects control agents – as had been done for microbial over the past 100 years, hence the introduction of organisms and semiochemicals (Directive 91/414) – legislation would be disproportionate to the risks. and that as a consequence, any regulation would The second view is that biocontrol represents a dif- remain at the discretion of individual member states, ferent situation because the movement of organisms and therefore, any agreement between countries through trade is accidental whereas introductions for would have to operate on a voluntary basis. pest management are intentional and can therefore In the context of the focus on arthropod be evaluated prior to release; also, because releases symbionts, it is of interest to note that since the 504 J. Appl. Entomol. 135 (2011) 503–513 ª 2011 Blackwell Verlag, GmbH J. Bale Regulation of invertebrate biocontrol agents in Europe introduction of regulation for invertebrate biological Directive 2001/18, and the arthropod containing the control agents (IBCAs) in parts of Europe, no coun- GMO could be viewed as a PPP containing an ‘active try has required information on the symbiont con- substance’ (the GMO) and regulated under Directive tent to be provided as part of the licensing process 91/414 and EC Regulation 1107/2009. for the import and release of non-native insects and A further hypothetical arthropod–symbiont combi- mites, although this is usually included for entomo- nation could emerge in the future that would raise pathogenic nematodes (EPNs). As there is no evi- different regulatory questions. There is a regular dence of horizontal transfer of symbionts between influx of non-native insect and mite pests into Europe arthropod species, at least under natural conditions such as the leaf mining Tomato moth Tuta absoluta (Chiel et al. 2009), this policy is unlikely to change.
Recommended publications
  • Attraction of Trichogramma Wasps to Brassica Nigra Plants Induced by Lepidopteran Eggs
    Attraction of Trichogramma wasps to Brassica nigra plants induced by lepidopteran eggs Ilich A. Figueroa Supervisors: Nina Fatouros, Ties Huigens Examiner: Marcel Dicke MSc. Minor Thesis– ENT-80424 Report no. 010.27 MSc Plant Science Program Laboratory of Entomology Wageningen University December, 2010 Abstract Plants possess a broad spectrum of defense mechanisms against herbivore attack. The black mustard Brassica nigra, is able to display early defense mechanism against egg infestation by pierid butterflies. This plant shows induced direct defense through hypersensitive response (HR), which kills the eggs as well as indirect defense by the emission of egg-induced plant volatiles that attract egg parasitoids such as Trichogramma wasp. In this study, I investigate whether B. nigra plants infested by the small cabbage white butterfly (Pieris rapae) or the cabbage moth (Mamestra brassicae) express both kind of defense strategies, and whether plants expressing HR still attract Trichgramma wasps in the laboratory and in nature. Tests in the y-tube olfactometer showed that volatiles of plants infested with P. rapae eggs 24h after egg deposition were attractive to the egg parasitoid Trichogramma brassicae when tested against volatiles of uninfested plants. All tested P. rapae-infested plants expressed HR 24h after oviposition. In contrast, plants infested with M. brassicae eggs did not express HR. Volatiles of M. brassicae egg-infested plants were attractive to T. brassicae only when tested against clean air but not when tested against volatiles of uninfested plants. In nature, 77% of the P. rapae eggs collected from HR+ B. nigra plants died, whereby 37% because of Trichogramma parasitism. Eggs collected on HR- B.
    [Show full text]
  • Effects of Artificial Diets and Floral Nectar on Parasitization
    Türk. entomol. derg., 2017, 41 (1): 53-60 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/ted.68668 E-ISSN 2536-491X Original article (Orijinal araştırma) Effects of artificial diets and floral nectar on parasitization performance of Trichogramma brassicae Bezdenko, 1968 (Hymenoptera: Trichogrammatidae)1 Yapay besin ve bitki nektarının Trichogramma brassicae Bezdenko, 1968 (Hymenoptera: Trichogrammatidae)’nin parazitleme performansına etkileri Nihal ÖZDER2* Şeyda DEMİRTAŞ2 Summary This study was conducted to determine whether various food resources enhanced the longevity and fecundity of the egg parasitoid Trichogramma brassicae Bezdenko, 1968 (Hymenoptera: Trichogrammatidae) under laboratory conditions (25°C, 65% RH, 16L:8D h photoperiod) at Laboratory of Biological Control, Department of Plant Protection, Agriculture Faculty, Namık Kemal University in 2014. Newly hatched female wasps were fed on Ephestia kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs with either honey, grape molasses and royal jelly as a main food, alone or double combination of this main foods or supplemented with resin (derived from plants), acacia nectar, Paulownia nectar, red tulip nectar, yellow asphodel nectar, apple syrup, liquid of E. kuehniella eggs or mashed E. kuehniella larvae. Trichogramma brassicae, females that were fed on honey and acacia nectar (17.47 d), honey + apple syrup (17.20 d), honey (16.93 d) and honey + Paulownia nectar (16.60 d) lived significantly longer than females that fed on other floral nectars and artificial diets. Females were fed on royal jelly + mashed E. kuehniella larvae (1.40 d) had the shortest longevity. Trichogramma brassicae females that were fed on honey (106.8 eggs), honey + acacia nectar (105.4 eggs), Paulownia nectar (103.13 eggs) parasitized significantly more hosts than females that fed on other floral nectars and artificial diets.
    [Show full text]
  • A Host–Parasitoid Model for Aspidiotus Rigidus (Hemiptera: Diaspididae) and Comperiella Calauanica (Hymenoptera: Encyrtidae)
    Environmental Entomology, 48(1), 2019, 134–140 doi: 10.1093/ee/nvy150 Advance Access Publication Date: 27 October 2018 Biological Control - Parasitoids and Predators Research A Host–Parasitoid Model for Aspidiotus rigidus (Hemiptera: Diaspididae) and Comperiella calauanica (Hymenoptera: Encyrtidae) Dave I. Palen,1,5 Billy J. M. Almarinez,2 Divina M. Amalin,2 Jesusa Crisostomo Legaspi,3 and Guido David4 Downloaded from https://academic.oup.com/ee/article-abstract/48/1/134/5145966 by guest on 21 February 2019 1University of the Philippines Visayas Tacloban College, Tacloban City, Philippines, 2BCRU-CENSER, Department of Biology, De La Salle University, Manila, Philippines, 3Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture—Agricultural Research Service, Tallahassee, FL, USA, 4Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines, and 5Corresponding author, e-mail: [email protected] Subject Editor: Darrell Ross Received 31 March 2018; Editorial decision 10 September 2018 Abstract The outbreak of the coconut scale insect Aspidiotus rigidus Reyne (Hemiptera: Encyrtidae) posed a serious threat to the coconut industry in the Philippines. In this article, we modeled the interaction between A. rigidus and its parasitoid Comperiella calauanica Barrion, Almarinez, Amalin (Hymenoptera: Encyrtidae) using a system of ordinary differential equations based on a Holling type III functional response. The equilibrium points were determined, and their local stability was examined. Numerical simulations showed that C. calauanica may control the population density of A. rigidus below the economic injury level. Key words: modeling, biological control—parasitoids and predators, host–parasitoid interactions Pest infestation has been a problem since the beginning of agricul- The use of a natural enemy to control pest outbreak is highly ture.
    [Show full text]
  • Intraguild Predation of Orius Niger (Hemiptera: Anthocoridae) on Trichogramma Evanescens (Hymenoptera: Trichogrammatidae)
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 609–613, 2017 http://www.eje.cz doi: 10.14411/eje.2017.074 ORIGINAL ARTICLE Intraguild predation of Orius niger (Hemiptera: Anthocoridae) on Trichogramma evanescens (Hymenoptera: Trichogrammatidae) SERKAN PEHLİVAN, ALİCAN KURTULUŞ, TUĞCAN ALINÇ and EKREM ATAKAN Department of Plant Protection, Agricultural Faculty, University of Çukurova, Adana, Turkey; e-mails: [email protected], [email protected], [email protected], [email protected] Key words. Hemiptera, Anthocoridae, Orius niger, Hymenoptera, Trichogrammatidae, Trichogramma evanescens, intraguild predation, Ephestia kuehniella, biological control Abstract. Intraguild predation of a generalist predator, Orius niger Wolff (Hemiptera: Anthocoridae) on Trichogramma evane- scens Westwood (Hymenoptera: Trichogrammatidae), was determined in choice and no-choice experiments using a factitious host, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), under laboratory conditions. Choice and no-choice experiments were conducted in order to assess the level of intraguild predation of O. niger on E. kuehniella eggs parasitized by T. evanescens. In no-choice experiments, approximately 50 sterile (1) non-parasitized, (2) 3-day-old parasitized, or (3) 6-day-old parasitized E. kuehniella eggs were offered to 24-h-old females of O. niger in glass tubes. In choice experiments approximately 25 eggs of two of the three groups mentioned above were offered to 24-h-old O. niger females. In both choice and no-choice experiments, O. niger consumed more non-parasitized eggs of E. kuehniella. However, intraguild predation occurred, especially of 3-day-old para- sitoids, but very few 6-day-old parasitized eggs were consumed. The preference index was nearly 1 indicating O.
    [Show full text]
  • Hitch-Hiking Parasitic Wasp Learns to Exploit Butterfly Antiaphrodisiac
    Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac Martinus E. Huigensa,1, Foteini G. Pashalidoua, Ming-Hui Qianb, Tibor Bukovinszkya, Hans M. Smida, Joop J. A. van Loona, Marcel Dickea, and Nina E. Fatourosa aLaboratory of Entomology, Department of Plant Sciences, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands; and bDepartment of Forest Protection, Guangdong Academy of Forestry, No. 233 Guangshan 1 Road, Longdong, Tianhe, Guangzhou, Guangdong, 510520, People’s Republic of China Communicated by Thomas Eisner, Cornell University, Ithaca, NY, December 4, 2008 (received for review November 10, 2008) Many insects possess a sexual communication system that is Recently, we verified the existence of such a strategy by using vulnerable to chemical espionage by parasitic wasps. We recently the tiny (Ϯ 0.5-mm long) wasp Trichogramma brassicae and one discovered that a hitch-hiking (H) egg parasitoid exploits the of its hosts, the Large Cabbage White butterfly Pieris brassicae. antiaphrodisiac pheromone benzyl cyanide (BC) of the Large Cab- The gregarious butterfly P. brassicae lays clutches of 20–50 eggs bage White butterfly Pieris brassicae. This pheromone is passed on wild and cultivated Brassica species (24). Male P. brassicae from male butterflies to females during mating to render them less butterflies synthesize an antiaphrodisiac, benzyl cyanide (BC), attractive to conspecific males. When the tiny parasitic wasp that is transferred to the females during mating within their Trichogramma brassicae detects the antiaphrodisiac, it rides on a ejaculate (11). Female T. brassicae wasps were shown to spy on mated female butterfly to a host plant and then parasitizes her BC innately, to find mated P.
    [Show full text]
  • Non-Target Host Acceptance and Parasitism by Trichogramma Brassicae Bezdenko (Hymenoptera: Trichogrammatidae) in the Laboratory
    Biological Control 26 (2003) 128–138 www.elsevier.com/locate/ybcon Non-target host acceptance and parasitism by Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) in the laboratory D. Babendreier,* S. Kuske, and F. Bigler Swiss Federal Research Station for Agroecology and Agriculture, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland Received 7 December 2001; accepted 11 September 2002 Abstract As part of a risk assessment study, we exposed eggs of 23 non-target lepidopteran species including nine butterflies endangered in Switzerland to individual Trichogramma brassicae Bezdenko females under no-choice conditions in the laboratory. We could show that Papilio machaon L. (Papilionidae), Artogeia ( ¼ Pieris) napi L. (Pieridae), Argynnis adippe Denis & Schiffermuuller,€ Clossiana titania Esper, (Nymphalidae), Aphantopus hyperanthus L., Maniola jurtina L., Coenonympha pamphilus L., Melanargia galathea L., Erebia ligea L., Hipparchia alcyone Denis & Schiffermuuller€ (Satyridae), Polyommatus icarus Rottemburg and Plebejus idas L. (Lycaenidae) were well accepted and not parasitized significantly different (range 73–94%) than the target, Ostinia nubilalis Huubner€ (81%). Virtually all eggs of Vanessa atalanta L., Argynnis niobe L., Clossiana selene L. (Nymphalidae), and Cyaniris semiargus Rottemburg (Lycaenidae) were accepted for oviposition resulting in significantly higher parasitism rates of 94–97% compared with the target. Melitaea parthenoides Keferstein, M. diamina Lang, and nearly 50% of Mellicta athalia Rottemburg (Nymphalidae) eggs were rejected early in the host selection process. Ovipositional success on eggs of Zygaena filipendula L. (Zygaenidae), Hesperia comma L. (Hesperidae), Sphinx ligustri L., and Deilephila elpenor L. (Sphingidae) was less than 30%. The number of times a female left a host egg before acceptance as well as the time from first host egg contact to acceptance was not related to parasitism rate on the tested non-targets.
    [Show full text]
  • Functional Response of Trichogramma Brassicae at Different Temperatures and Relative Humidities
    Bulletin of Insectology 61 (2): 245-250, 2008 ISSN 1721-8861 Functional response of Trichogramma brassicae at different temperatures and relative humidities 1 2 2 Mitra MOEZIPOUR , Maryam KAFIL , Hossein ALLAHYARI 1Department of Plant Protection, College of Agriculture, University of Technology, Isfahan, Iran 2Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran Abstract Trichogrammatid egg parasitoids are the most promising biological control agents for inundative releases against Lepidopteran pests. Trichogramma brassicae Bezdenko is an egg parasitoid of the carob moth, Apomyelois (Ectomyelois) ceratoniae (Zeller), in Iranian Pomegranate orchards. Study on the functional response of natural enemies is one of the necessary features for the se- lection of natural enemies for biological control programs. In this study, laboratory tests were conducted to determine the func- tional response of T. brassicae on its factitious host, eggs of angoumois grain moth, Sitotroga cerealella (Olivier), at different temperatures and humidity. The type of functional response of T. brassicae was II at 25 °C and III at 20 and 30 °C (60% relative humidity). A model with indicator variable was used to compare the output parameters in different data sets. Analyses indicated that there is a significant difference in functional response of T. brassicae at 20 and 30 °C. Additional tests showed that changes at relative humidity can change the functional response parameters. Key words: functional response, egg parasitoids, Trichogrammatidae,
    [Show full text]
  • Augmentative Biological Control in Outdoor Annual Crops
    Grenier et al. _________________________________________________________________________________ ARTIFICIAL DIET FOR REARING TRICHOGRAMMA WASPS (HYMENOPTERA: TRICHOGRAMMATIDAE) WITH EMPHASIS ON PROTEIN UTILIZATION Simon GRENIER1, Silvia M. GOMES2, Gérard FEBVAY1, Patrice BOLLAND1, and José R.P. PARRA2 1 UMR INRA/INSA de Lyon BF2I, Bât. L. Pasteur, 20 Ave. Einstein 69621 Villeurbanne Cedex France [email protected] 2 Departemento de Entomologia Fitopatologia e Zoologia Agricola, ESALQ, USP 13418-900 Piracicaba SP, Brazil ABSTRACT Trichogramma wasps are tiny hymenopterous egg parasitoids widely used in biological con- trol programs worldwide. The huge quantities of insects necessary for inundative releases are 480 mainly produced on factitious hosts like Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae), or on silkworms. In order to simplify production, increase its flexibility, and potentially re- duce cost, studies on artificial media for the development of the parasitoids have been ongo- ing for many years. Some successes were obtained, mainly with artificial media containing insect extracts such as pupal hemolymph from Lepidoptera. To define new artificial media devoid of insect components or improve the performances of existing ones, a better knowl- edge of parasitoid nutrition would be useful. Proteins are key components in artificial media, and research was conducted on Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) to better understand the nutritional value of proteins by investigating to what degree they are assimilated by the insect. A method was developed for studying the assimilation of these nutrients by the pre- imaginal stages of T. pretiosum based on adding a mixture of free 14C-radiolabelled amino acids to the medium to be tested. The basic composition of the medium already included proteins, and proteins to be tested were also added.
    [Show full text]
  • Trichogramma Brassicae</Emphasi
    Published in BioControl 49, issue 1, 1-19, 2004 1 which should be used for any reference to this work CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Parasitism of non-target lepidoptera by mass released Trichogramma brassicae and its implication for the larval parasitoid Lydella thompsoni Stefan KUSKE1∗, Dirk BABENDREIER1, Peter J. EDWARDS2, Ted C.J. TURLINGS3 and Franz BIGLER1 1Swiss Federal Research Station for Agroecology and Agriculture, Reckenholzstrasse 191, 8046 Zürich, Switzerland; 2Geobotanical Institute ETH, Zürichbergstrasse 38, 8044 Zürich, Switzerland; 3Institute of Zoology, Université de Neuchâtel, Case postale 2, 2007 Neuchâtel, Switzerland ∗Author for correspondence; e-mail: [email protected] Abstract. The release of high numbers of the egg parasitoid Trichogramma brassicae Bezd. (Hym. Trichogrammatidae) to control the European corn borer (ECB), Ostrinia nubilalis Hb. (Lep.: Crambidae) in maize has raised concerns about potential negative effects on native natural enemies. The native larval parasitoid Lydella thompsoni Herting (Dipt.: Tachinidae) is the most frequent and important ECB parasitoid in southern Switzerland and can achieve high parasitism rates. Its first generation emerges too early to find ECB larvae and must rely on alternative hosts living in natural habitats close to maize fields. Inundative releases of T. brassicae coincide with the oviposition period of the alternative hosts of the tachinid. T. brassicae moving out of release fields may attack and diminish the population of these hosts, creating a bottleneck situation for L. thompsoni in the subsequent spring. Laboratory host specificity tests showed that the tachinid’s two most abundant spring hosts Archanara gemi- nipuncta Haworth (1809) (Lep.: Noctuidae) and Chilo phragmitellus Hübner (1805) (Lep.: Crambidae) are successfully parasitised by T.
    [Show full text]
  • Augmentation of Trichogramma Brassicae for Control of Cruciferous Lepidoptera J.G
    160 Lundgren and Heimpel ___________________________________________________________________ AUGMENTATION OF TRICHOGRAMMA BRASSICAE FOR CONTROL OF CRUCIFEROUS LEPIDOPTERA J.G. Lundgren1 and G.E. Heimpel2 1Department of Entomology, University of Illinois, Urbana, Illinois, U.S.A. 2Department of Entomology, University of Minnesota, St. Paul, Minnesota, U.S.A. INTRODUCTION Pesticides are the dominant method for controlling Pieris rapae (L.) and Trichoplusia ni (Hübner) in cruciferous crops because of a low market tolerance for pest damage and the lack of reliable alternative pest control options. In the northern United States, there are no native egg parasitoids that attack these pests, and over the past 30 years there have been several attempts to find a suitable species and strain of Trichogramma for this use (Oatman et al., 1968; Parker and Pinnell, 1972; Oatman and Platner, 1972; van Lenteren and Pak, 1984; Pak et al., 1989). In the most successful of these attempts, a strain of Trichogramma evanescens Westwood was able to suppress cruciferous Lepidoptera to acceptable levels in field trials (Parker et al., 1971; Parker and Pinnell, 1972). Unfortunately, this strain was lost, and its identity is now in question (Pinto 1998); furthermore, research has not revealed a species of Trichogramma that inflicts comparable levels of mortality to crucifer pests. Preliminary data gathered in our laboratory suggested that a strain of commercially produced Trichogramma brassicae (Bezdenko) may be able to cause high levels of mortality in the eggs of P. rapae under field conditions (Fig. 1). 1.0 Parasitism Mortality 0.8 0.6 0.4 Proportion 0.2 0.0 pre-release release adjacent Sample Locale Figure 1.
    [Show full text]
  • Laboratory Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma Pretiosum (Hymenoptera: Trichogrammatidae)
    RESEARCH ARTICLE Laboratory Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) Aloisio Coelho, Jr1*, Paul F. Rugman-Jones2, Carolina Reigada1, Richard Stouthamer2, José R. P. Parra1 1 Escola Superior de Agricultura “Luiz de Queiroz”- ESALQ/ Universidade de São Paulo – USP, Piracicaba, SP, Brazil, 2 Department of Entomology, University of California, Riverside, California, United States of America a11111 * [email protected] Abstract In this study we assessed the relationship between the laboratory and field performance of OPEN ACCESS different isofemale lines of Trichogramma pretiosum Riley. In comparative assays, we used Citation: Coelho A, Jr, Rugman-Jones PF, Reigada three rare mitochondrial haplotypes as genetic markers of the isofemale lines, and by intro- C, Stouthamer R, Parra JRP (2016) Laboratory gressing these mitochondrial haplotypes into each of 15 genetically different nuclear lines, Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma also tested the assumption that mitochondria are neutral markers. In a laboratory trial, 45 pretiosum (Hymenoptera: Trichogrammatidae). PLoS isofemale lines (15 nuclear genotypes x three mitochondrial haplotypes) were ranked in ONE 11(1): e0146153. doi:10.1371/journal. three categories (best, intermediate and worst) according to the mean offspring production pone.0146153 and the proportion of female offspring. Subsequently, lines from each of the three catego- Editor: Daniel Doucet, Natural Resources Canada, ries were selected for field releases to quantify field parasitism on Ephestia kuehniella. Tem- CANADA porally separate releases were done in a transgenic Bt cornfield, with four plots, each with Received: May 13, 2015 50 points of recapture.
    [Show full text]
  • Prva Najdba Parazitoidne Ose Trichogramma Brassicae Bezdenko, 1968 (Hymenoptera, Trichogrammatidae) V Sloveniji
    COBISS Code 1.01 DOI: 10.14720/aas.2015.105.2.15 Agrovoc descriptors: Trichogramma brassicae, Hymenoptera, parasitoids, biological control, biological pest control, caterpillars, Slovenia Agris category code: h01, h10 Prva najdba parazitoidne ose Trichogramma brassicae Bezdenko, 1968 (Hymenoptera, Trichogrammatidae) v Sloveniji Tanja BOHINC1, Stefan SCHMIDT2, Juan Carlos MONJE3, Stanislav TRDAN4 Received July 10, 2015; accepted September 07, 2015. Delo je prispelo 10. julija 2015, sprejeto 07. septembra 2015. IZVLEČEK ABSTRACT V prispevku predstavljamo parazitoidno oso, katero smo v FIRST RECORD OF PARASITIC WASP Trichogramma Sloveniji prvič našli avgusta 2014, in sicer v jajčnem leglu brassicae BEZDENKO, 1968 (Hymenoptera, kapusove sovke (Mamestra brassicae) na zelju. Parazitoidna Trichogrammatidae) IN SLOVENIA osa Trichogrammma brassicae spada med jajčne parazitoide in je znana kot naravni sovražnik metuljev (Lepidoptera). The paper presents the parasitic wasp, which occurrence in Prvotno so omenjeno parazitoidno oso uporabljali za zatiranje Slovenia was first confirmed in August 2014 on egg layers of koruzne vešče (Ostrinia nubilalis), pozneje pa je pridobila na cabbage moth (Mamestra brassicae) from cabbage. The wasp pomenu tudi pri biotičnem zatiranju nekaterih ostalih Trichogrammma brassicae belongs among egg parasitoids and gospodarsko pomembnih škodljivih vrst metuljev. S prvo it is especially known as biological control agent of potrditvijo zastopanosti T. brassicae v Sloveniji je izpolnjen lepidopteran pests. In the beginning the wasp was used for prvi pogoj za njeno uvrstitev na Seznam domorodnih vrst controlling European corn borer (Ostrinia nubilalis), later it organizmov za namen biotičnega varstva rastlin in s tem za becomes an important biological control agent of some other njeno praktično uporabo pri biotičnem zatiranju škodljivih economically important lepidopteran pests.
    [Show full text]