Augmentative Biological Control in Outdoor Annual Crops
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A PARASITOID of the BEAN Flow Er Thrips Megalurothrips
University of Ghana http://ugspace.ug.edu.gh QL568.E3 D63 blthrC.l G364086 University of Ghana http://ugspace.ug.edu.gh THE BIOLOGY OF CERANISUS MENES (WALKER) (HYM., EULOPHIDAE), A PARASITOID OF THE BEAN F lo w e r t h r ip s megalurothrips s j o s t e d t i (TRYBOM) (THYS., THRIPIDAE):A COMPARISON BtTWEEN AFRICAN AND ASIAN POPULATIONS BY KHADYDIOP University of Ghana http://ugspace.ug.edu.gh THE BIOLOGY OF CERANISUS MENES (WALKER) (HYM., EULOPHIDAE), A PARASITOID OF THE BEAN FLOWER THRIPS MEGALUROTHRIPS SJOSTEDTI (TRYBOM) (THYS., THRIPIDAE): A COMPARISON BETWEEN AFRICAN AND ASIAN POPULATIONS A thesis submitted to the Department of Crop Science of the Faculty of Agriculture, University of Ghana, Legon in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Science (Entomology) By Khady DIOP B. Sc. (Entomology) University of California, Riverside (USA) Crop Science Department, Faculty of Agriculture, University of Ghana, September, 1999. University of Ghana http://ugspace.ug.edu.gh Declaration I hereby declare that the work contained in this thesis for the Doctor of Philosophy degree in Crop Science (Entomology) is the result of my own investigations and has not been submitted for a similar degree in any other University. Khady Diop Professor J. N. Ayertey University Supervisor IITA supervisor University of Ghana http://ugspace.ug.edu.gh Dedication To my mother Nafy Gueye. To my two adoptive mothers, Khady Diagne and Awa Gueye, peace on them University of Ghana http://ugspace.ug.edu.gh Abstract Cowpea is an important food crop in Africa, but suffers from a variety of insect pests. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Attraction of Trichogramma Wasps to Brassica Nigra Plants Induced by Lepidopteran Eggs
Attraction of Trichogramma wasps to Brassica nigra plants induced by lepidopteran eggs Ilich A. Figueroa Supervisors: Nina Fatouros, Ties Huigens Examiner: Marcel Dicke MSc. Minor Thesis– ENT-80424 Report no. 010.27 MSc Plant Science Program Laboratory of Entomology Wageningen University December, 2010 Abstract Plants possess a broad spectrum of defense mechanisms against herbivore attack. The black mustard Brassica nigra, is able to display early defense mechanism against egg infestation by pierid butterflies. This plant shows induced direct defense through hypersensitive response (HR), which kills the eggs as well as indirect defense by the emission of egg-induced plant volatiles that attract egg parasitoids such as Trichogramma wasp. In this study, I investigate whether B. nigra plants infested by the small cabbage white butterfly (Pieris rapae) or the cabbage moth (Mamestra brassicae) express both kind of defense strategies, and whether plants expressing HR still attract Trichgramma wasps in the laboratory and in nature. Tests in the y-tube olfactometer showed that volatiles of plants infested with P. rapae eggs 24h after egg deposition were attractive to the egg parasitoid Trichogramma brassicae when tested against volatiles of uninfested plants. All tested P. rapae-infested plants expressed HR 24h after oviposition. In contrast, plants infested with M. brassicae eggs did not express HR. Volatiles of M. brassicae egg-infested plants were attractive to T. brassicae only when tested against clean air but not when tested against volatiles of uninfested plants. In nature, 77% of the P. rapae eggs collected from HR+ B. nigra plants died, whereby 37% because of Trichogramma parasitism. Eggs collected on HR- B. -
Effects of Artificial Diets and Floral Nectar on Parasitization
Türk. entomol. derg., 2017, 41 (1): 53-60 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/ted.68668 E-ISSN 2536-491X Original article (Orijinal araştırma) Effects of artificial diets and floral nectar on parasitization performance of Trichogramma brassicae Bezdenko, 1968 (Hymenoptera: Trichogrammatidae)1 Yapay besin ve bitki nektarının Trichogramma brassicae Bezdenko, 1968 (Hymenoptera: Trichogrammatidae)’nin parazitleme performansına etkileri Nihal ÖZDER2* Şeyda DEMİRTAŞ2 Summary This study was conducted to determine whether various food resources enhanced the longevity and fecundity of the egg parasitoid Trichogramma brassicae Bezdenko, 1968 (Hymenoptera: Trichogrammatidae) under laboratory conditions (25°C, 65% RH, 16L:8D h photoperiod) at Laboratory of Biological Control, Department of Plant Protection, Agriculture Faculty, Namık Kemal University in 2014. Newly hatched female wasps were fed on Ephestia kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs with either honey, grape molasses and royal jelly as a main food, alone or double combination of this main foods or supplemented with resin (derived from plants), acacia nectar, Paulownia nectar, red tulip nectar, yellow asphodel nectar, apple syrup, liquid of E. kuehniella eggs or mashed E. kuehniella larvae. Trichogramma brassicae, females that were fed on honey and acacia nectar (17.47 d), honey + apple syrup (17.20 d), honey (16.93 d) and honey + Paulownia nectar (16.60 d) lived significantly longer than females that fed on other floral nectars and artificial diets. Females were fed on royal jelly + mashed E. kuehniella larvae (1.40 d) had the shortest longevity. Trichogramma brassicae females that were fed on honey (106.8 eggs), honey + acacia nectar (105.4 eggs), Paulownia nectar (103.13 eggs) parasitized significantly more hosts than females that fed on other floral nectars and artificial diets. -
Harmonization of Regulations for Invertebrate Biocontrol Agents in Europe: Progress, Problems and Solutions J
J. Appl. Entomol. MINI REVIEW Harmonization of regulations for invertebrate biocontrol agents in Europe: progress, problems and solutions J. Bale School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK Keywords Abstract biological control, environmental risk assessment, Europe, regulation The use of non-native invertebrate biological control agents (IBCAs) in Europe is not covered by a Directive equivalent to that which regulates Correspondence biocontrol with microorganisms or the genetic modification of crop Jeffrey Bale (corresponding author), School of plants. Regulation is at the discretion of individual member states and Biosciences, University of Birmingham, largely derived from national legislation on pesticides, plant health or Edgbaston, Birmingham B15 2TT, UK. environmental protection. There is no EU country with regulation of E-mail: [email protected] IBCAs that requires information on the microbial symbiont content of Received: September 29, 2010; accepted: candidate species, and in the absence of horizontal transfer under natu- December 23, 2010. ral conditions, this policy is unlikely to change. Although there have been few reported negative effects linked to the import and release of doi: 10.1111/j.1439-0418.2011.01611.x IBCAs, a number of countries have introduced or revised their regula- tory frameworks in recent years. This article reviews major develop- ments in the regulation and environmental risk assessment (ERA) of IBCAs in Europe over the last 10 years including: the fragmented pat- tern of regulation between countries, variation in information require- ments for release licences, format and methods of ERA for different taxonomic groups of IBCAs, use and updating of the European Plant Protection Organisation Positive List, sources of expert advice on ERA data, communication between IBCA regulators, and options for the provision of international leadership to coordinate regulatory and ERA-related issues with IBCA-based biocontrol in Europe. -
A Host–Parasitoid Model for Aspidiotus Rigidus (Hemiptera: Diaspididae) and Comperiella Calauanica (Hymenoptera: Encyrtidae)
Environmental Entomology, 48(1), 2019, 134–140 doi: 10.1093/ee/nvy150 Advance Access Publication Date: 27 October 2018 Biological Control - Parasitoids and Predators Research A Host–Parasitoid Model for Aspidiotus rigidus (Hemiptera: Diaspididae) and Comperiella calauanica (Hymenoptera: Encyrtidae) Dave I. Palen,1,5 Billy J. M. Almarinez,2 Divina M. Amalin,2 Jesusa Crisostomo Legaspi,3 and Guido David4 Downloaded from https://academic.oup.com/ee/article-abstract/48/1/134/5145966 by guest on 21 February 2019 1University of the Philippines Visayas Tacloban College, Tacloban City, Philippines, 2BCRU-CENSER, Department of Biology, De La Salle University, Manila, Philippines, 3Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture—Agricultural Research Service, Tallahassee, FL, USA, 4Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines, and 5Corresponding author, e-mail: [email protected] Subject Editor: Darrell Ross Received 31 March 2018; Editorial decision 10 September 2018 Abstract The outbreak of the coconut scale insect Aspidiotus rigidus Reyne (Hemiptera: Encyrtidae) posed a serious threat to the coconut industry in the Philippines. In this article, we modeled the interaction between A. rigidus and its parasitoid Comperiella calauanica Barrion, Almarinez, Amalin (Hymenoptera: Encyrtidae) using a system of ordinary differential equations based on a Holling type III functional response. The equilibrium points were determined, and their local stability was examined. Numerical simulations showed that C. calauanica may control the population density of A. rigidus below the economic injury level. Key words: modeling, biological control—parasitoids and predators, host–parasitoid interactions Pest infestation has been a problem since the beginning of agricul- The use of a natural enemy to control pest outbreak is highly ture. -
Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms. -
Intraguild Predation of Orius Niger (Hemiptera: Anthocoridae) on Trichogramma Evanescens (Hymenoptera: Trichogrammatidae)
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 609–613, 2017 http://www.eje.cz doi: 10.14411/eje.2017.074 ORIGINAL ARTICLE Intraguild predation of Orius niger (Hemiptera: Anthocoridae) on Trichogramma evanescens (Hymenoptera: Trichogrammatidae) SERKAN PEHLİVAN, ALİCAN KURTULUŞ, TUĞCAN ALINÇ and EKREM ATAKAN Department of Plant Protection, Agricultural Faculty, University of Çukurova, Adana, Turkey; e-mails: [email protected], [email protected], [email protected], [email protected] Key words. Hemiptera, Anthocoridae, Orius niger, Hymenoptera, Trichogrammatidae, Trichogramma evanescens, intraguild predation, Ephestia kuehniella, biological control Abstract. Intraguild predation of a generalist predator, Orius niger Wolff (Hemiptera: Anthocoridae) on Trichogramma evane- scens Westwood (Hymenoptera: Trichogrammatidae), was determined in choice and no-choice experiments using a factitious host, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), under laboratory conditions. Choice and no-choice experiments were conducted in order to assess the level of intraguild predation of O. niger on E. kuehniella eggs parasitized by T. evanescens. In no-choice experiments, approximately 50 sterile (1) non-parasitized, (2) 3-day-old parasitized, or (3) 6-day-old parasitized E. kuehniella eggs were offered to 24-h-old females of O. niger in glass tubes. In choice experiments approximately 25 eggs of two of the three groups mentioned above were offered to 24-h-old O. niger females. In both choice and no-choice experiments, O. niger consumed more non-parasitized eggs of E. kuehniella. However, intraguild predation occurred, especially of 3-day-old para- sitoids, but very few 6-day-old parasitized eggs were consumed. The preference index was nearly 1 indicating O. -
Hitch-Hiking Parasitic Wasp Learns to Exploit Butterfly Antiaphrodisiac
Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac Martinus E. Huigensa,1, Foteini G. Pashalidoua, Ming-Hui Qianb, Tibor Bukovinszkya, Hans M. Smida, Joop J. A. van Loona, Marcel Dickea, and Nina E. Fatourosa aLaboratory of Entomology, Department of Plant Sciences, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands; and bDepartment of Forest Protection, Guangdong Academy of Forestry, No. 233 Guangshan 1 Road, Longdong, Tianhe, Guangzhou, Guangdong, 510520, People’s Republic of China Communicated by Thomas Eisner, Cornell University, Ithaca, NY, December 4, 2008 (received for review November 10, 2008) Many insects possess a sexual communication system that is Recently, we verified the existence of such a strategy by using vulnerable to chemical espionage by parasitic wasps. We recently the tiny (Ϯ 0.5-mm long) wasp Trichogramma brassicae and one discovered that a hitch-hiking (H) egg parasitoid exploits the of its hosts, the Large Cabbage White butterfly Pieris brassicae. antiaphrodisiac pheromone benzyl cyanide (BC) of the Large Cab- The gregarious butterfly P. brassicae lays clutches of 20–50 eggs bage White butterfly Pieris brassicae. This pheromone is passed on wild and cultivated Brassica species (24). Male P. brassicae from male butterflies to females during mating to render them less butterflies synthesize an antiaphrodisiac, benzyl cyanide (BC), attractive to conspecific males. When the tiny parasitic wasp that is transferred to the females during mating within their Trichogramma brassicae detects the antiaphrodisiac, it rides on a ejaculate (11). Female T. brassicae wasps were shown to spy on mated female butterfly to a host plant and then parasitizes her BC innately, to find mated P. -
Releases of Parasitoids (Ceranisus Spp.) As Biological Control Agents of Western Flower Thrips (Frankliniella Occidentalis) in Experimental Glasshouses
Bulletin of Insectology 59 (2): 85-97, 2006 ISSN 1721-8861 Releases of parasitoids (Ceranisus spp.) as biological control agents of western flower thrips (Frankliniella occidentalis) in experimental glasshouses 1,3 2,3 2,3 1 Antoon J. M. LOOMANS , Jan TOLSMA , Joan J. FRANSEN , Joop C. VAN LENTEREN 1Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands 2Applied Plant Research (PPO-WUR), Aalsmeer, The Netherlands 3Current address: Plant Protection Service, Wageningen, The Netherlands Abstract Experimental releases were performed to investigate the potential of thrips parasitoids as biological control agents of western flower thrips, Frankliniella occidentalis (Pergande). Strains of two larval parasitoid species (Hymenoptera: Eulophidae), Cerani- sus menes (Walker) (a strain from France and from Brazil) and Ceranisus americensis (Girault) (Arizona strain), were released in different commercial greenhouse crops. In all crops only traces of parasitism were recorded. In an experimental rose crop (cv. 'Frisco'), releases were made of two parasitoid species, C. menes (a French strain) and C. americensis (Arizona strain) in two separate greenhouse compartments. An account is given on the release, dispersal, establishment, population dynamics and control capacity of both parasitoid species. Parasitoids spread readily and established themselves throughout the crops, but releases did not result in reduction of thrips during a five month period. Rates of parasitism stayed lower than 10% throughout the season, re- sulting in severe damage of the rose crop. The potential of parasitoids as biological control agents of thrips pests in ornamental crops is discussed. Key words: Frankliniella occidentalis, Ceranisus menes, Ceranisus americensis, ornamentals, dispersal, control capacity, glasshouse. Introduction even a zero-tolerance is the standard. -
Description of the Male Ceranisus Americensis (Girault) (Hymenoptera: Eulophidae)
PAN·PACIFIC ENTOMOLOGIST 72(3): 168-170, (1996) Scientific Note DESCRIPTION OF THE MALE OF CERANISUS AMERICENSIS (GIRAULT) (HYMENOPTERA: EULOPHIDAE) Members of the genus Ceranisus Walker (Eulophidae, subfamily Entedoninae) are solitary, internal parasitoids of immature stages of thrips (Thysanoptera). The Nearctic species of Ceranisus have been recently revised (Triapitsyn, S. V. & D. H. Headrick. 1995. Trans. Am. Entomo!. Soc., 121(4): 227-248). However, this revision lacks a description of the male of Ceranisus americensis (Girault), a common parasitoid of flower thrips, Frankliniella spp., in North America. The importance of C. americensis as a biological control agent against western flower thrips, Frankliniella occidentalis (Pergande) (Greene, 1. & M. Parrella. Green house Grower, Dec 1992: 69-72, as Ceranisus sp.), warrants complete taxonomic knowledge of this parasitoid species. Ceranisus americensis, originally described as a Thripoctenus (Girault, A. A. 1917. Proc. U.S. Nat. Mus., 53(2213): 445-450), was known only from females until recently, when Robert Zuparko sent several Ceranisus specimens to us for a possible species identification. This material, collected in California in 1964, contained females of C. americensis along with two males that we consider as being conspecific. Despite sexual dimorphism in some antennal structures com mon among Ceranisus spp. (i.e., a swollen scape and a 3-segmented club in males and a slender scape and a 2-segmented club in females), both female and male C. americensis share similar funicular characters: Fl is small and usually lacking sensilla whereas F2 is much larger than Fl and bears several sensilla (Fig. 1). , Figures 1-3. Ceranisus americensis (Girault), male. -
Parasitoids As Biological Control Agents of Thrips Pests Promotor: Prof
Parasitoids as Biological Control Agents of Thrips Pests Promotor: Prof. dr. J.C. van Lenteren Hoogleraar in de Entomologie, Wageningen Universiteit Promotie Commissie: Prof. dr. L.E.M. Vet, Wageningen Universiteit, Wageningen Dr. B. Aukema, Plantenziektenkundige Dienst, Wageningen Dr. W.J. de Kogel, Plant Research International, Wageningen Prof. dr. H. Eijsackers, Vrije Universiteit, Amsterdam. Parasitoids as Biological Control Agents of Thrips Pests Antoon Loomans Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op maandag 8 september 2003 des namiddags te vier uur in de Aula Loomans, A.J.M. (2003) Parasitoids as Biological Control Agents of Thrips Pests Thesis Wageningen University – with references – with summaries in English, Dutch and Italian Subject headings / Thysanoptera / Frankliniella occidentalis / Hymenoptera / Ceranisus menes / Ceranisus americensis / biological control / ISBN : 90-5808-884-7 to Giorgio Nicoli aan Lois, Romi, Oskar, Viktor & Sofia Contents Chapter 1 Evaluation of hymenopterous parasitoids as biological control agents of 1 thrips pests in protected crops: introduction Chapter 2 Exploration for hymenopterous parasitoids of thrips 45 Chapter 3 Mass-rearing thrips and parasitoids 67 Chapter 4 Host selection by thrips parasitoids: effects of host age, host size and 79 period of exposure on behaviour and development Chapter 5 Host selection by Ceranisus menes and C. americensis: inter- and