S1 Supp Tables

Total Page:16

File Type:pdf, Size:1020Kb

S1 Supp Tables Table S1. Taxon sampling, habitat type, and Genbank numbers of specimens used in this study. Habitat is scored as 0=marine, 1=freshwater, 2=anadromous, and 3=catadromous. Taxa Habitat rag1 rag2 16s cytb Clupeidae Alosa aestivalis 2 NA DQ912146 DQ912076 EU552615 Alosa alabamae 2 NA KJ158109 KJ158129 KJ158091 Alosa alosa 0 NA NA NC_009575 NC_009575 Alosa chrysochloris 1 DQ912117 DQ912151 DQ912081 KJ158092 Alosa fallax 0 NA NA EU552737 EU552574 Alosa mediocris 2 KJ158146 KJ158110 KJ158130 KJ158093 Alosa pseudoharengus 2 DQ912115 DQ912149 DQ912079 AP009132 Alosa sapidissima 2 DQ912116 DQ912150 DQ912080 EU552616 Anodontostoma chacunda 0 NA NA AP011614 AP011614 Brevoortia aurea 0 NA NA NA EF564665 Brevoortia patronus 0 DQ912105 DQ912138 DQ912068 EU552618 Brevoortia smithi 0 KJ158148 KJ158112 KJ158131 KJ158094 Brevoortia tyrannus 0 DQ912106 DQ912139 DQ912069 EU552614 Clupea harengus 0 DQ912114 DQ912148 DQ912078 EU552606 Clupea pallasii 0 DQ912118 DQ912152 DQ912082 EU552599 Clupeichthys aesarnensis 1 NA NA AP011584 AP011584 Clupeichthys perakensis 1 NA NA AP011585 AP011585 Clupeoides borneensis 1 NA NA AP011586 AP011586 Clupeonella cultriventris 2 NA NA NC_015109 NC_015109 Corica laciniata 1 NA NA AP011589 AP011589 Dorosoma cepedianum 1 DQ912099 DQ912132 DQ912062 EU552586 Dorosoma petenense 1 KJ158147 KJ158111 NC_009580 EU552581 Ehirava fluviatilis 0 NA NA AP011588 AP011588 Escualosa thoracata 0 NA NA AP011601 AP011601 Ethmidium maculatum 0 NA NA AP011602 AP011602 Ethmalosa fimbriata 0 NA NA NC_009582 NC_009582 Etrumeus teres 0 DQ912110 DQ912143 DQ912073 EU552621 Etrumeus whiteheadi 0 NA NA EU552730 EU552567 Gilchristella aestuaria 1 NA NA EU552741 EU552578 Gudusia chapra 1 KJ158145 KJ158108 KJ158128 KJ158090 Harengula humeralis 0 KJ158135 KJ158098 KJ158116 NA Harengula jaguana 0 DQ912122 DQ912156 DQ912086 EU552617 Hilsa kelee 0 NA NA AP011613 AP011613 Hyperlophus vittatus 0 NA NA EU552750 EU552587 Jenkinsia lamprotaenia 0 DQ912107 DQ912140 DQ912070 EU552613 Konosirus punctatus 0 NA NA NA AB548682 Lile stolifera 0 KJ158137 KJ158100 KJ158119 KJ158080 Limnothrissa miodon 1 NA NA EU552720 EU552553 Microthrissa congica 1 NA NA EU552789 EU552625 Microthrissa royauxi 1 NA NA EU552790 EU552626 Nematalosa erebi 1 NA NA EU552755 EU552592 Nematalosa japonica 0 NA NA NC_009586 NC_009586 Odaxothrissa vittata 1 DQ912131 DQ912167 DQ912096 NC_009590 Opisthonema libertate 0 NA KJ158101 KJ158120 KJ158081 Opisthonema oglinum 0 DQ912111 DQ912144 DQ912074 EU552620 Pellonula vorax 1 NA NA EU552792 EU552628 Pellonula leonensis 1 DQ912130 DQ912166 DQ912095 EU552624 Potamalosa richmondia 1 NA NA AP011594 AP011594 Potamothrissa obtusirostris 1 NA NA EU552787 EU552623 Ramnogaster sp. 0 NA NA NA GQ890211 Rhinosardinia amazonica 1 NA NA EU552713 EU552550 Rhinosardinia bahiensis 1 KJ158149 KJ158113 KJ158132 KJ158095 Sardina pilchardus 0 NA DQ912158 NC_009592 AF472582 Sardinella aurita 0 DQ912104 DQ912137 DQ912067 EU552619 Sardinella lemuru 0 KJ158136 NA KJ158117 KJ158078 Sardinella maderensis 0 NA NA NC_009587 NC_009587 Sardinops sagax 0 NA NA NC_002616 EU552565 Sauvagella madagascariensis 1 NA NA EU552773 EU552610 Sauvagella robusta 1 NA NA EU552770 EU552608 Sierrathrissa leonensis 1 NA NA EU552756 EU552593 Spratelloides delicatulus 0 DQ912128 DQ912164 NC_009588 NC_009588 Spratelloides gracilis 0 DQ912129 DQ912165 NC_009589 NC_009589 Spratelloides robustus 0 NA NA EU552786 NA Sprattus antipodum 0 NA NA AP011608 AP011608 Sprattus muelleri 0 NA NA AP011607 AP011607 Sprattus sprattus 0 NA NA AP009234 AP009234 Stolothrissa tanganicae 1 NA NA EU552719 EU552552 Tenualosa ilisha 2 NA NA DQ400344 EU552622 Tenualosa thibaudeaui 1 NA NA AP011604 AP011604 Chirocentridae Chirocentrus dorab 0 DQ912127 DQ912163 AP006229 NC_006913 Denticipitidae Denticeps clupeoides 1 DQ912100 DQ912133 DQ912063 EU552629 Engraulidae Amazonsprattus scintilla 1 JQ012538 JQ012667 JQ012456 JQ012351 Anchoa cubana 0 JQ012550 JQ012705 JQ012447 JQ012342 Anchoa lyolepis 0 JQ012573 JQ012688 JQ012449 JQ012344 Anchoa cayorum 0 JQ012555 JQ012700 JQ012451 JQ012347 Anchoa mitchilli 0 JQ012552 JQ012698 JQ012462 JQ012357 Anchoa walkeri 0 JQ012568 JQ012713 JQ012474 JQ012369 Anchoa nasus 0 JQ012575 JQ012690 JQ012478 JQ012373 Anchoa chamensis 0 JQ012563 JQ012718 JQ012480 JQ012375 Anchoa parva 0 JQ012558 JQ012702 JQ012482 JQ012377 Anchoa lamprotaenia 0 JQ012630 JQ012696 JQ012484 JQ012379 Anchoa colonensis 0 JQ012559 JQ012716 JQ012488 JQ012383 Anchoa panamensis 0 JQ012570 JQ012712 JQ012497 JQ012392 Anchoa mundeoloides 0 JQ012565 JQ012715 JQ012524 JQ012419 Anchoa delicatissima 0 JQ012557 JQ012704 JQ012453 JQ012348 Anchoa schofieldi 0 JQ012571 JQ012711 JQ012454 JQ012349 Anchoa filfera 0 JQ012542 JQ012722 JQ012492 JQ012387 Anchoa spinifer 0 KJ158140 KJ158104 KJ158123 KJ158085 Anchoa sp. 0 KJ158141 KJ158105 KJ158124 KJ158086 Anchovia macrolepidota 0 JQ012561 JQ012709 JQ012499 JQ012394 Anchovia surinamensis 1 JQ012613 JQ012665 JQ012507 JQ012402 Anchovia clupeoides 0 KJ158142 KJ158106 KJ158125 KJ158087 Anchoviella guianensis 1 JQ012606 JQ012657 JQ012429 JQ012324 Anchoviella alleni 1 JQ012598 JQ012655 JQ012438 JQ012333 Anchoviella alleni 1 JQ012628 JQ012669 JQ012440 JQ012335 Anchoviella sp. 2 1 JQ012581 JQ012648 JQ012442 JQ012337 Anchoviella carrikeri 1 JQ012605 JQ012659 JQ012444 JQ012339 Anchoviella sp. 1 1 JQ012589 JQ012677 JQ012458 JQ012353 Anchoviella balboae 0 JQ012566 JQ012720 JQ012476 JQ012371 Anchoviella elongata 0 JQ012548 JQ012707 JQ012486 JQ012381 Anchoviella cf. guianensis 1 JQ012585 JQ012673 JQ012505 JQ012400 Anchoviella sp. 3 1 JQ012593 JQ012632 JQ012509 JQ012404 Anchoviella guianensis 1 JQ012591 JQ012652 JQ012511 JQ012406 Anchoviella brevirostris 0 JQ012608 JQ012686 JQ012517 JQ012412 Anchoviella lepidentistole 0 JQ012596 JQ012634 JQ012519 JQ012414 Anchoviella carrikeri 1 JQ012583 JQ012650 JQ012528 JQ012422 Anchoviella carrikeri 1 JQ012599 JQ012663 JQ012530 JQ012424 Anchoviella cf. guianensis 1 JQ012544 JQ012646 JQ012432 JQ012327 Anchoviella jamesi 1 KJ158138 KJ158102 NA KJ158083 Anchoviella manamensis 1 KJ158139 KJ158103 NA KJ158084 Cetengraulis edentulus 0 JQ012577 JQ012692 JQ012490 JQ012385 Cetengraulis mysticetus 0 JQ012579 JQ012694 JQ012495 JQ012390 Coilia brachygnathus 1 DQ912124 DQ912159 DQ912089 EU694410 Coilia lyndmani 1 NA NA NC_014271 NC_014271 Coilia mystus 0 DQ912126 DQ912162 DQ912092 EU694407 Coilia nasus 0 DQ912123 DQ912157 AP009135 AP009135 Coilia reynaldi 0 NA NA NC_014276 NC_014276 Encrasicholina devisi 0 JQ012626 JQ012684 JQ012469 JQ012364 Encrasicholina punctifer 0 NA NA AP011561 AP011561 Engraulis anchoita 0 NA NA JQ012521 JQ012416 Engraulis ringens 0 JQ012533 JQ012731 JQ012532 JQ012426 Engraulis eurystole 0 DQ912121 DQ912155 DQ912085 JQ012427 Engraulis japonicus 0 AY430205 NA NC003097 NC_003097 Engraulis mordax 0 JQ012546 JQ012728 JQ012455 JQ012350 Engraulis encrasicolus 0 JQ012540 JQ012726 JQ012464 JQ012359 Jurengraulis juruensis 1 JQ012610 JQ012732 JQ012434 JQ012329 Lycengraulis poeyi 0 JQ012621 JQ012642 JQ012475 JQ012370 Lycengraulis grossidens 0 JQ012622 JQ012639 JQ012501 JQ012396 Lycengraulis batesii 1 JQ012619 JQ012643 JQ012515 JQ012411 Lycothrissa crocodilus 0 JQ012534 JQ012683 JQ012526 JQ012420 Pterengraulis atherinoides 1 JQ012616 JQ012636 JQ012428 JQ012323 Setipinna melanochir 0 NA NA AP011565 AP011565 Setipinna taty 0 NA JQ012681 JQ012470 JQ012365 Setipinna cf. tenuifilis 0 NA JQ012682 JQ012503 JQ012398 Stolephorus cf. chinensis 0 NA NA AP011566 AP011566 Stolephorus cf. waitei 0 NA NA AP011567 AP011567 Stolephorus sp. 0 JQ012536 JQ012671 JQ012466 JQ012361 Thryssa baelama 0 NA NA NC_014264 NC_014264 Thryssa c.f. dussumieri 0 JQ012535 JQ012678 JQ012468 JQ012363 Thryssa mystax 0 JQ012537 JQ012680 JQ012471 JQ012366 Pristigasteridae Chirocentrodon bleekerianus NA NA KJ158121 NA Ilisha africana 0 NA NA NC_009584 NC_009584 Ilisha amazonica 1 KJ158151 KJ158115 KJ158134 KJ158097 Ilisha elongata 0 NA DQ912160 DQ912090 AP009141 Ilisha megaloptera 0 NA KJ158099 KJ158118 KJ158079 Odontognathus mucronatus 0 NA NA KJ158122 KJ158082 Pellona castelnaeana 1 DQ912102 DQ912135 DQ912065 EU552554 Pellona flavipinnis 1 DQ912101 DQ912134 DQ912064 EU552551 Pellona harroweri 0 KJ158143 KJ158107 KJ158126 KJ158088 Pristigaster cayana 1 KJ158150 KJ158114 KJ158133 KJ158096 Pristigaster whiteheadi 1 KJ158144 NA KJ158127 KJ158089 Sundasalangidae Sundasalanx mekongensis 1 NA NA AP006232 AP006232 Outgroups Salmonidae Oncorhynchus mykiss 2 U15663 U31670 NC_001717 NC_001717 Cyprinidae Danio rerio 1 U71093 DRU71094 NC_002333 NC_002333 Cyprinidae Cyprinus carpio 1 AY787040 DQ366994 NC_001606 NC_001606 Ictuluridae Ictalurus punctatus 1 AY423859 AY184245 NC003489 NC_003489 Hepsetidae Hepsetus odoe 1 DQ912097 AY804086 NC_015819 NC_015819 Chanidae Chanos chanos 0 AY430207 NA NC_004693 NC_004693 Table S2. Models of evolution and partitioning strategy selected by PartitionFinder and implemented in RAxML. Partition Model selected Model used rag1, 1st position SYM+G GTR+G rag1, 2nd position, rag2 2nd position SYM+I+G GTR+G rag1, 3rd position SYM+I+G GTR+G rag2, 1st position GTR+I+G GTR+G rag2, 3rd position K80+I+G HKY+G cytb, 1st position SYM+I+G GTR+G cytb 2nd position GTR+I+G GTR+G cytb, 3rd position GTR+G GTR+G 16s GTR+G GTR+G Fossil Calibrations To determine absolute divergence times, we used seven fossil and biogeographic age calibrations with exponential priors to set a hard minimum and soft maximum bound [1]. Several of the fossil calibrations have been used in recent studies [2-4], however we include additional clupeiform fossils that have not yet been included in diversification time analysis of this group.
Recommended publications
  • The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion Into West Africa
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive Marine Incursion: The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion into West Africa Anthony B. Wilson1,2¤*, Guy G. Teugels3, Axel Meyer1 1 Department of Biology, University of Konstanz, Konstanz, Germany, 2 Zoological Museum, University of Zurich, Zurich, Switzerland, 3 Ichthyology Laboratory, Royal Museum for Central Africa, Tervuren, Belgium Abstract The spectacular marine-like diversity of the endemic fauna of Lake Tanganyika, the oldest of the African Great Lakes, led early researchers to suggest that the lake must have once been connected to the ocean. Recent geophysical reconstructions clearly indicate that Lake Tanganyika formed by rifting in the African subcontinent and was never directly linked to the sea. Although the Lake has a high proportion of specialized endemics, the absence of close relatives outside Tanganyika has complicated phylogeographic reconstructions of the timing of lake colonization and intralacustrine diversification. The freshwater herring of Lake Tanganyika are members of a large group of pellonuline herring found in western and southern Africa, offering one of the best opportunities to trace the evolutionary history of members of Tanganyika’s biota. Molecular phylogenetic reconstructions indicate that herring colonized West Africa 25–50MYA, at the end of a major marine incursion in the region. Pellonuline herring subsequently experienced an evolutionary radiation in West Africa, spreading across the continent and reaching East Africa’s Lake Tanganyika during its early formation. While Lake Tanganyika has never been directly connected with the sea, the endemic freshwater herring of the lake are the descendents of an ancient marine incursion, a scenario which may also explain the origin of other Tanganyikan endemics.
    [Show full text]
  • Molecular Systematics of the Anchovy Genus Encrasicholina in the Northwest Pacific
    RESEARCH ARTICLE Molecular systematics of the anchovy genus Encrasicholina in the Northwest Pacific SeÂbastien Lavoue 1*, Joris A. M. Bertrand1,2,3, Hui-Yu Wang1, Wei-Jen Chen1, Hsuan- Ching Ho4, Hiroyuki Motomura5, Harutaka Hata6, Tetsuya Sado7, Masaki Miya7 1 Institute of Oceanography, National Taiwan University, Taipei, Taiwan, 2 Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland, 3 Swiss Institute of Bioinformatics, GeÂnopode, Quartier Sorge, Lausanne, Switzerland, 4 National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, 5 The Kagoshima University Museum, 1-21-30 Korimoto, Kagoshima, Japan, 6 The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, a1111111111 Japan, 7 Department of Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, a1111111111 955-2 Aoba-cho, Chuo-ku, Chiba, Japan a1111111111 a1111111111 * [email protected] a1111111111 Abstract The anchovy genus Encrasicholina is an important coastal marine resource of the tropical OPEN ACCESS Indo-West Pacific (IWP) region for which insufficient comparative data are available to eval- Citation: Lavoue S, Bertrand JAM, Wang H-Y, uate the effects of current exploitation levels on the sustainability of its species and popula- Chen W-J, Ho H-C, Motomura H, et al. (2017) tions. Encrasicholina currently comprises nine valid species that are morphologically very Molecular systematics of the anchovy genus similar. Only three, Encrasicholina punctifer, E. heteroloba, and E. pseudoheteroloba, occur Encrasicholina in the Northwest Pacific. PLoS ONE 12(7): e0181329. https://doi.org/10.1371/journal. in the Northwest Pacific subregion of the northeastern part of the IWP region. These species pone.0181329 are otherwise broadly distributed and abundant in the IWP region, making them the most Editor: Bernd Schierwater, Tierarztliche important anchovy species for local fisheries.
    [Show full text]
  • Sardinella
    A CHECK.LIST OF THE FISHES OF INDIA, BURMA AND CEYLON. PART II. CLUPEIFORMES, BATHYCLUPEIFORMES, GALAXIIFORMES, SCOPELIFORMES AND ATELEOPIl~"ORMES. By K. S. l\iISRA, D.Se., F.Z.S., ,,1ssistant Superintendent, Zoological Survey of India, Kaiser Castle, Banaras Gantt. CONTENTS. PAGE. INTRODUOTION •• 382 SYSTEMATIC ACCOUNT 382 Class TELEOSTOMI 382 Subclass ACTINOPTERYGII 382 Order CLUPEIFOR)IES (ISOSPONDYLI, MALACOPTERYGII S. STR., 382 THRISSO)IORPHI). Suborder CLUPEOIDEI .. 382 Superfamily ELOPOIDAE 382 Family ELOPIDAE 382 Elopa 8aurU8 L. 382 Family MEGALOPIDA.E 383 M egalopa cyprinoides (Brouss.) 383 Su perfamily ALBULOIDAE 383 Family ALBULIDAE 383 Albula vulpe8 (L.) 384 Superfamily CLUPEOIDAE ... 384 Family CL UPEIDAE .' 384 SU bfamily DU88umieriini 384- Dussumieria acuta (C.V.) ". 384 Dus8umieria hasselti Blkr. 384 Ehirava jluviatiz.i8 Deraniyagala 385 Stolephorus malabaricu.9 Day 385 Subfamily Clupeini 385 IJarengula, punctata (RUpp.) 385 , Ilarcngula 'l:itteta (C. V .) .. 386 Sardinella albella.<C.V.) 386 Sardinella clupeoides (Blkr.) 387 Sardinella dayi Reg. 387 Saidinella jimbriata (C.V.) .. 387 Sa-rdinella gibbosa (Blkr.) 387 Sarain,ella longiceps C. V. 388 Sardinella melon1#tra (C.) 388 Sard·inella 8inden~i8 (Day) 389 Sardinella sirm (RliPll.) 389 Hilsu U·isha (Ham.) 389 HUsa !'anglt'rta (Blkr.) 390 390 lli/sa tol~ (C.v.) ., . [ 377 ] Q 378 Records of tll.e Indian Museum. [VOL. XLV .P~OE. (}ac1lUsia chapra (Ham.) 391 GadU8ia vari8!Jata (Day) 391 l(owala coval (C.) · . 392 Oarica Bohoma Ham. 392 Ilisha brachllsom:a (Blkr.) .. 3\J2 llisha elongata (Benn.) .. 393 llish.Q jiligera (C. V.) Ii • 393 llislla indica (Swns.) .. 393 ilisha kampeni (Web. & de Bfrt.) 394 llisha leach.enaulti (C.V.) , .
    [Show full text]
  • Pattern of Oocyte Development and Batch Fecundity in the Mediterranean Sardine
    Fisheries Research 67 (2004) 13–23 Pattern of oocyte development and batch fecundity in the Mediterranean sardine Konstantinos Ganias a,∗, Stylianos Somarakis b,c, Athanassios Machias c, Athanasios Theodorou a a Laboratory of Oceanography, University of Thessaly, Fytokou Street, GR 38446, N. Ionia, Magnisia, Greece b Department of Biology, University of Patras, 26500 Patra, Greece c Institute of Marine Biology of Crete, P.O. Box 2214, GR 71003, Iraklio, Crete, Greece Received 24 March 2003; received in revised form 6 August 2003; accepted 18 August 2003 Abstract In the present study, the pattern of oocyte development was investigated in the Mediterranean sardine (Sardina pilchardus sardina) in order to examine whether non-hydrated females could be included in batch fecundity measurements. Gonad histol- ogy and frequency distributions of oocyte diameters demonstrated that the Mediterranean sardine exhibits group-synchronous type of oocyte development. The spawning batch begins to separate in size from the adjacent population of smaller oocytes at the secondary yolk globule stage and a well-developed size-hiatus is established at the tertiary yolk globule stage. The spawning batch could be clearly identified prior to hydration and batch fecundity-on-fish weight relationships did not differ significantly between hydrated females and females at the tertiary and migratory nucleus stages. Thus, apart from hydrated females, batch fecundity in the Mediterranean sardine may also be measured by the use of females at the tertiary and migratory nucleus stages. Relative fecundity was shown to be independent of body weight and its estimates during the respective peak spawning months for the Aegean Sea and Ionian Sea stocks were 360 eggs/g (December 2000) and 339 eggs/g (February 2001).
    [Show full text]
  • Notvitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    NotvitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2835, pp. 1-44, figs. 1-40, table 1 November 12, 1985 The West African Pygmy Herrng Sierrathrissa leonensis: General Features, Visceral Anatomy, and Osteology PETER J. P. WHITEHEAD1 AND GUY G. TEUGELS2 C O N T E N T S Abstract ..................... .................................... 2 Introduction .......................................................... 2 Acknowledgments ......................................................... 3 Abbreviations ......................................................... 4 External Features ......................................................... 4 Visceral Anatomy ......................................................... 7 Skeleton .......................................................... 11 Chondrocranium ......................................................... 12 Ethmoid Region ......................................................... 13 Jaws ..................................................................... 14 Circumorbital Series ........................................................ 15 Opercular Series ......................................................... 16 Hyopalatine Arch ......................................................... 16 Hyal Arch and Branchiostegal Rays ................. .......................... 18 Branchial Skeleton ......................................................... 19 Neurocranium .............................................................
    [Show full text]
  • Herrings, Sardines, Anchovies Capture Production by Species, Fishing Areas and Countries Or Areas B-35 Harengs, Sardines, Anchoi
    224 Herrings, sardines, anchovies Capture production by species, fishing areas and countries or areas B-35 Harengs, sardines, anchois Captures par espèces, zones de pêche et pays ou zones Arenques, sardinas, anchoas Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Especie, Área de pesca t t t t t t t t t t Atlantic herring Hareng de l'Atlantique Arenque del Atlántico Clupea harengus 1,21(05)001,05 HER 21 Canada 163 263 160 101 167 782 140 237 155 178 149 883 134 468 113 989 126 102 114 610 Spain - - 11 - - - - 1 - - USA 97 398 93 934 73 330 77 912 101 133 65 138 78 507 86 415 93 967 92 402 21 Fishing area total 260 661 254 035 241 123 218 149 256 311 215 021 212 975 200 405 220 069 207 012 27 Belgium 6 3 1 0 0 1 3 4 22 27 Channel Is - - - 1 1 1 - 0 - - Denmark 167 456 139 660 120 660 105 450 92 049 77 445 85 934 125 117 141 028 135 580 Estonia 22 098 23 192 26 108 31 843 33 168 28 866 25 325 22 047 21 941 23 130 Faroe Is 71 878 71 840 63 332 78 317 94 538 87 575 72 952 51 352 115 552 43 326 Finland 66 977 79 887 89 393 83 717 90 833 92 757 98 002 117 866 122 318 131 116 France 40 960 39 607 22 115 22 122 3 752 4 421 12 879 24 372 30 142 30 945 Germany 92 581 80 552 49 966 46 660 37 453 37 038 37 023 51 214 71 841 53 423 Greenland 3 360 18 130 4 898 4 245 3 730 4 764 2 940 2 583 12 133 13 181 Iceland 261 445 291 380 319 894 370 814 331 200 254 476 198 463 115 181 157 537 157 895 Ireland 29 341 30 780 30 827 28 058 26 254 26 662 24 807 28 719 23 192 24 056 Isle of Man ..
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Lake Kivu Aquatic Ecology Series 5 Editor: Jef Huisman, the Netherlands
    Lake Kivu Aquatic Ecology Series 5 Editor: Jef Huisman, The Netherlands For further volumes: http://www.springer.com/series/5637 Jean-Pierre Descy • François Darchambeau Martin Schmid Editors Lake Kivu Limnology and biogeochemistry of a tropical great lake Editors Jean-Pierre Descy François Darchambeau Research Unit in Environmental Chemical Oceanography Unit and Evolutionary Biology University of Liège Department of Biology Allée du 6-Août 17 University of Namur B-4000 Liège, Belgium Rue de Bruxelles 61 B-5000 Namur, Belgium Martin Schmid Surface Waters - Research and Management Eawag: Swiss Federal Institute of Aquatic Science and Technology Seestrasse 79 CH-6047 Kastanienbaum Switzerland ISBN 978-94-007-4242-0 ISBN 978-94-007-4243-7 (eBook) DOI 10.1007/978-94-007-4243-7 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012937795 © Springer Science+Business Media B.V. 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Age and Growth of Cetengraulis Edentulus (Clupeiformes: Engraulidae) in a Subtropical Bight of Southern Coast Brazil
    ZOOLOGIA 28 (3): 297–304, June, 2011 doi: 10.1590/S1984-46702011000300003 Age and growth of Cetengraulis edentulus (Clupeiformes: Engraulidae) in a subtropical bight of Southern Coast Brazil José Maria Souza-Conceição1 & Paulo Ricardo Schwingel2 1 Universidade da Região de Joinville. Rua Paulo Malschitzki 10, Campus Universitário, Zona Industrial, 89219-710 Joinville, SC, Brazil. E-mail: [email protected] 2 Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí. Rua Uruguai 458, Caixa Postal 360, 88302-202 Itajaí, SC, Brazil. E-mail: [email protected] ABSTRACT. Age and growth of Cetengraulis edentulus (Cuvier, 1828) in the Saco dos Limões bight (Southern Brazil) were studied. Sampling was carried out from August 2001 to July 2003. The study of age and growth was based on the interpretation of the periodicity of ring formation in the otoliths sagittae of 491 individuals, temporal variation of otolith edge, relative marginal increments (RMI), age-length key, and von Bertalanffy curve. Cetengraulis edentulus otoliths were adequate for the interpretation of age with 86% of legibility, in which a translucent zone and its adjacent opaque zone were deposited each year. The translucent zone is formed during the cold period and the opaque zone in the warm period. Fish aged 0 (<12 months) – 4.0 year old were found and the population structure reveals the predominance of – 1.05 (t – 0.002) individuals 1.0 and 2.0 year old. The species has a fast growth, and the growth equation is Lt = 156.70 (1 – e ). Cetengraulis edentulus attains the sexual maturity with 1.19 year for the females and 1.12 year for the males, which occur in all life stages throughout the year in the study area.
    [Show full text]
  • Food Resources of Lake Tanganyika Sardines Metabarcoding of the Stomach Content of Limnothrissa Miodon and Stolothrissa Tanganicae
    FACULTY OF SCIENCE Food resources of Lake Tanganyika sardines Metabarcoding of the stomach content of Limnothrissa miodon and Stolothrissa tanganicae Charlotte HUYGHE Supervisor: Prof. F. Volckaert Thesis presented in Laboratory of Biodiversity and Evolutionary Genomics fulfillment of the requirements Mentor: E. De Keyzer for the degree of Master of Science Laboratory of Biodiversity and Evolutionary in Biology Genomics Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Acknowledgments First of all, I would like to thank my promotor Filip for giving me this opportunity and guiding me through the thesis. A very special thanks to my supervisor Els for helping and guiding me during every aspect of my thesis, from the sampling nights in the middle of Lake Tanganyika to the last review of my master thesis. Also a special thanks to Franz who helped me during the lab work and statistics but also guided me throughout the thesis. I am very grateful for all your help and advice during the past year.
    [Show full text]
  • 61661147.Pdf
    Resource Inventory of Marine and Estuarine Fishes of the West Coast and Alaska: A Checklist of North Pacific and Arctic Ocean Species from Baja California to the Alaska–Yukon Border OCS Study MMS 2005-030 and USGS/NBII 2005-001 Project Cooperation This research addressed an information need identified Milton S. Love by the USGS Western Fisheries Research Center and the Marine Science Institute University of California, Santa Barbara to the Department University of California of the Interior’s Minerals Management Service, Pacific Santa Barbara, CA 93106 OCS Region, Camarillo, California. The resource inventory [email protected] information was further supported by the USGS’s National www.id.ucsb.edu/lovelab Biological Information Infrastructure as part of its ongoing aquatic GAP project in Puget Sound, Washington. Catherine W. Mecklenburg T. Anthony Mecklenburg Report Availability Pt. Stephens Research Available for viewing and in PDF at: P. O. Box 210307 http://wfrc.usgs.gov Auke Bay, AK 99821 http://far.nbii.gov [email protected] http://www.id.ucsb.edu/lovelab Lyman K. Thorsteinson Printed copies available from: Western Fisheries Research Center Milton Love U. S. Geological Survey Marine Science Institute 6505 NE 65th St. University of California, Santa Barbara Seattle, WA 98115 Santa Barbara, CA 93106 [email protected] (805) 893-2935 June 2005 Lyman Thorsteinson Western Fisheries Research Center Much of the research was performed under a coopera- U. S. Geological Survey tive agreement between the USGS’s Western Fisheries
    [Show full text]