foods Review Microbes: Food for the Future Matilde Ciani , Antonio Lippolis , Federico Fava, Liliana Rodolfi , Alberto Niccolai and Mario R. Tredici * Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; matilde.ciani@unifi.it (M.C.);
[email protected]fi.it (A.L.);
[email protected]fi.it (F.F.); liliana.rodolfi@unifi.it (L.R.); alberto.niccolai@unifi.it (A.N.) * Correspondence: mario.tredici@unifi.it; Tel.: +39-055-457-4030 Abstract: Current projections estimate that in 2050 about 10 billion people will inhabit the earth and food production will need to increase by more than 60%. Food security will therefore represent a mat- ter of global concern not easily tackled with current agriculture practices and curbed by the increasing scarcity of natural resources and climate change. Disrupting technologies are urgently needed to improve the efficiency of the food production system and to reduce the negative externalities of agriculture (soil erosion, desertification, air pollution, water and soil contamination, biodiversity loss, etc.). Among the most innovative technologies, the production of microbial protein (MP) in controlled and intensive systems called “bioreactors” is receiving increasing attention from research and industry. MP has low arable land requirements, does not directly compete with crop-based food commodities, and uses fertilizers with an almost 100% efficiency. This review considers the potential and limitations of four MP sources currently tested at pilot level or sold as food or feed ingredients: hydrogen oxidizing bacteria (HOB), methanotrophs, fungi, and microalgae (cyanobacteria). The environmental impacts (energy, land, water use, and GHG emissions) of these MP sources are com- pared with those of plant, animal, insect, and cultured meat-based proteins.