Bacterial Additives That Consistently Enhance Rotifer Growth Under Synxenic Culture Conditions 1

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Additives That Consistently Enhance Rotifer Growth Under Synxenic Culture Conditions 1 Aquaculture 182Ž. 2000 249±260 www.elsevier.nlrlocateraqua-online Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions 1. Evaluation of commercial products and pure isolates P.A. Douillet ) The UniÕersity of Texas at Austin, Marine Science Institute, 1300 Port Street, Port Aransas, TX 78373, USA Accepted 20 July 1999 Abstract Axenic rotifers Ž.Brachionus plicatilis MullerÈ were cultured under aseptic conditions; they were fed either a bacteria-free artificial dietŽ. AD , or axenic Isochrysis galbana, or a combination of axenic Chlorella minutissima and the bacteria-free AD. The medium was inoculated with commercial bacterial additives or cultured strains of marine bacteria. The highest improvements in growth rateŽ. GR of rotifer populations were obtained with laboratory grown bacteria. Addition of an Alteromonas strain and an unidentified Gram negative strainŽ. B3 consistently enhanced rotifer GR in all experiments, and under all feeding regimes in comparison with control cultures inoculated with microbial communities present in seawater, or maintained bacteria-free. None of the other isolates or commercial products were consistent in their enhancement of rotifer production. q 2000 Elsevier Science B.V. All rights reserved. Keywords: Rotifer; Brachionus plicatilis; Isochrysis galbana 1. Introduction The rotifer Brachionus plicatilis has become a valuable and, in many cases indis- pensable, food organism for first feeding of a large variety of cultured marine finfish and crustacean larvaeŽ. Watanabe et al., 1983; Lubzens et al., 1997 . However, suppressed ) 1692 Houghton Ct North, Dunwoody, GA 30338, USA. Tel.: q1-770-671-9393; E-mail: philippe± [email protected] 0044-8486r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved. PII: S0044-8486Ž. 99 00271-9 250 P.A. DouilletrAquaculture 182() 2000 249±260 growth or unforeseen death of rotifers are frequently observed in mass cultures Ž.Hirayama, 1987; Ushiro et al., 1990; Maeda and Hino, 1991; Hino, 1993 . Rotifer cultures harbor very large bacterial populations, which have been estimated to be in the order of 107 cells mly1 Ž. Nicolas and Joubert, 1986; Nicolas et al., 1989 . Rapid successional processes in the microbiota have been observed during the culture of rotifersŽ. Maeda and Hino, 1991 , and changes in the microbial ecosystem have been postulated as the cause of the collapse of rotifer culturesŽ. Hino, 1993 . The effects of bacteria on rotifer cultures are strain specific, as demonstrated by the findings of Yasuda and TagaŽ. 1980 , Yu et al. Ž. 1988 , Gatesoupe et al. Ž. 1989 , Maeda and HinoŽ. 1991 and Hagiwara et al. Ž. 1994 . These authors reported strains, from diverse taxonomical groups, that were able to either decrease or increase the growth rate Ž.GR of B. plicatilis. However, bacterially mediated changes in rotifer GRs are caused by diverse mechanisms. A nutritional contribution of bacteria to rotifer diets has been demonstrated by supply of vitamin B12 Ž. Yu et al., 1988 or inorganic nutrients Ž Hessen and Andersen, 1990. In contrast, production of bacterial toxins has been found to reduce rotifer survival ratesŽ. Yu et al., 1990 . Another possible effect of bacteria in rotifer cultures is the biochemical transformation of accumulated waste products. Nitrogen budgets carried out with rotifers fed Nanochloropsis sp. revealed that 82%± 84% of the ingested N was released into the water as metabolic excretion and feces Ž.Tanaka, 1991; Hino et al., 1997 . Accumulation of metabolic products and excess uneaten food cause deterioration of water qualityŽ. Lubzens, 1987 , which may affect rotifer growth and reproductionŽ. Tanaka, 1991 . In fact, rotifer densities have been reported to decrease with increases of either un-ionized ammoniaŽ Yu and Hirayama, 1986.Ž or nitrite Lubzens, 1987 . Removal of waste products from rotifer cultures has been reported to extend the harvest periodŽ. Lubzens, 1987 . A bacterially mediated improvement in water quality might be a very plausible mechanism for increasing rotifer GRs. In this study, the effects of additions of laboratory-grown microbes and several commercial bacterial additives were evaluated on the GR of B. plicatilis cultured under synxenic conditions, i.e., rotifers were grown in the presence of a known number, one or more, of microbial species. Single strains and commercial products with diverse characteristics that might be beneficial for rotifers were selected so that the evaluation of microbes would cover different plausible bacterial mechanisms for rotifer culture enhancement. The screening of microbes was carried out under an artificial dietŽ. AD and different algae feeding regimes. 2. Materials and methods 2.1. Preparation of rotifers Cysts of the rotifer B. plicatilis MullerÈ Ž. formerly called L-type B. plicatilis were purchased from Aquaculture Supply, Florida. Bacteria-free rotifers were obtained by disinfecting the external surface of the cysts with sodium hypochlorite and they were tested for microbial contamination according to the methods presented in Douillet P.A. DouilletrAquaculture 182() 2000 249±260 251 Ž.1998 . To confirm that the rotifers were axenic, incubation tests of samples of rotifers in broth and agar under aerobic and anaerobic conditions were continued for 30 days. Axenicity tests were also performed on axenic and starved cultures at the end of the experiments. The experiment was discarded if bacterial contamination was detected. 2.2. Preparation of diets An AD was developed and tested in preliminary experiments. The diet was prepared by dissolving 8 g of microfine SpirulinaŽ 8±10 by 20 mm; Aurum Aquaculture, Washington.Ž and 8 g of Torula dried yeast Lake States Division of Rhinelander Paper, Wisconsin. in 1 l of seawater at 15 ppt salinity. The dissolved diet was autoclaved. After cooling, filter-sterilized cyanocobalamineŽ. vitamin B12 was added at a concentration of 120 mg ly1 to the flask of AD to be used for first feeding only. The adequacy of the diet was ascertained by observing no significant difference between rotifer production in cultures fed either this diet or the diet developed by Gatesoupe and LuquetŽ. 1981 . Axenic Isochrysis galbana Ž.clone C-ISO, CCMP463 and Chlorella minutissima Ž.clone 2341 used in Experiments 2 and 4 were obtained from the National Center for Culture of Marine PhytoplanktonŽ. Maine and The Culture Collection of Algae at The University of Texas at Austin, respectively. Algae were grown in fr2 mediaŽ Guillard and Ryther, 1962. at 20±25 ppt salinity. Algal cultures were maintained in an incubator at 258C under constant cool-white fluorescent light at an intensity of 2250±4600 lx. Axenicity of algae was determined as described above for rotifers. Both species of algae were grown in 200 ml Erlenmeyer flasks. The cells were concentrated by centrifugation and resuspended at high concentrations in FASW, so that their daily addition to rotifer culturesŽ. approx. 20 ml would have little impact on rotifer densities. Rotifer cultures fed AD only were amended daily with FASW to maintain similar volumes to algae-fed rotifer cultures. 2.3. Preparation of bacteria Commercially available bacterial additives were added directly to rotifer cultures. Bacterial strains kindly provided by other scientists or isolated by the author were cultured on Difco marine agar for 2±3 days, resuspended in FASW, washed by centrifugationŽ. 10,000=g for 10 min and resuspended in FASW. Photosynthetic bacteriaŽ. PH were cultured on Rhodospirillum ATTC Medium 1308 Ž Atlas and Parks, 1993, p. 774. for 1 week at 258C, under constant cool-white fluorescent light at an intensity of 2250±4600 lx. All glassware was washed in 10% nitric acid and rinsed seven times with tap water. Heat sterilization was carried out for 15 min at 1218C and a pressure of 1.06 kg cmy2 . All manipulations were done under a laminar flow hood. 2.4. Experimental protocol Axenic rotifers were counted and transferred to 50 ml screw cap test tubes containing 30 ml of FASW. Samples of rotifers were taken from identical test tubes not used in 252 P.A. DouilletrAquaculture 182() 2000 249±260 experiments to corroborate initial rotifer densities. Culture experiments were initiated by the addition of food and the different bacteria. Control cultures consisted of:Ž. 1 cultures fed the same diets but maintained bacteria- free,Ž. 2 cultures fed the same diets and inoculated with bacteria present in 100 ml samples of freshly collected seawater filtered through a 1-mm screenŽ.Ž. SW , 3 starved cultures in Experiment 3, andŽ. 4 rotifer cultures fed only axenic I. galbana in Experiment 1. Rotifers were fed AD andror algae daily. The first day of culture, the AD was added at a final concentration of 0.2 mg mly1 ; then, the ration was decreased to 0.14 mg mly1 dayy1. The final concentration of cyanocobalamine after the first feeding was 1.5 g mly1 , as recommended by Hirayama and FunamotoŽ. 1983 . This vitamin was added only with the first feeding. Rotifers were fed on AD in Experiments 1 and 3. In Experiment 2, rotifers were fed either AD or axenic I. galbana. Rotifers fed I. galbana received daily additions to maintain a final concentration of 2=106 cells mly1.In Experiment 4, rotifers were fed either AD or a combination of AD and axenic C. minutissima. Rotifers were fed the same concentrations of AD under both feeding treatments. Rotifers supplemented with C. minutissima received daily algal additions to maintain a final concentration of 1=107 cells mly1. Commercial bacterial additives and pure bacterial isolates were added only once to rotifer cultures, on day one of the experiments, at a final concentration of 2=107 cells mly1. Bacteria concentrations were derived from equations relating spectrophotometric absorbanceŽ. 600 nm and bacteria numbers; the latter value was determined by direct count using DAPI staining techniquesŽ. Porter and Feig, 1980 . Such equations were developed and used for each bacterial additive tested. Commercial bacterial products and cultured strains tested in this research are presented in Table 1.
Recommended publications
  • Gnesiotrocha, Monogononta, Rotifera) in Thale Noi Lake, Thailand
    Zootaxa 2997: 1–18 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Diversity of sessile rotifers (Gnesiotrocha, Monogononta, Rotifera) in Thale Noi Lake, Thailand PHURIPONG MEKSUWAN1, PORNSILP PHOLPUNTHIN1 & HENDRIK SEGERS2,3 1Plankton Research Unit, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Songkhla, Thai- land. E-mail: [email protected], [email protected] 2Freshwater Laboratory, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium. E-mail: [email protected] 3Corresponding author Abstract In response to a clear gap in knowledge on the biodiversity of sessile Gnesiotrocha rotifers at both global as well as re- gional Southeast Asian scales, we performed a study of free-living colonial and epiphytic rotifers attached to fifteen aquat- ic plant species in Thale Noi Lake, the first Ramsar site in Thailand. We identified 44 different taxa of sessile rotifers, including thirty-nine fixosessile species and three planktonic colonial species. This corresponds with about 40 % of the global sessile rotifer diversity, and is the highest alpha-diversity of the group ever recorded from a single lake. The record further includes a new genus, Lacinularoides n. gen., containing a single species L. coloniensis (Colledge, 1918) n. comb., which is redescribed, and several possibly new species, one of which, Ptygura thalenoiensis n. spec. is formally described here. Ptygura noodti (Koste, 1972) n. comb. is relocated from Floscularia, based on observations of living specimens of this species, formerly known only from preserved, contracted specimens from the Amazon region.
    [Show full text]
  • February 15, 2012 Chapter 34 Notes: Flatworms, Roundworms and Rotifers
    February 15, 2012 Chapter 34 Notes: Flatworms, Roundworms and Rotifers Section 1 Platyhelminthes Section 2 Nematoda and Rotifera 34-1 Objectives Summarize the distinguishing characteristics of flatworms. Describe the anatomy of a planarian. Compare free-living and parasitic flatworms. Diagram the life cycle of a fluke. Describe the life cycle of a tapeworm. Structure and Function of Flatworms · The phylum Platyhelminthes includes organisms called flatworms. · They are more complex than sponges but are the simplest animals with bilateral symmetry. · Their bodies develop from three germ layers: · ectoderm · mesoderm · endoderm · They are acoelomates with dorsoventrally flattened bodies. · They exhibit cephalization. · The classification of Platyhelminthes has undergone many recent changes. Characteristics of Flatworms February 15, 2012 Class Turbellaria · The majority of species in the class Turbellaria live in the ocean. · The most familiar turbellarians are the freshwater planarians of the genus Dugesia. · Planarians have a spade-shaped anterior end and a tapered posterior end. Class Turbellaria Continued Digestion and Excretion in Planarians · Planarians feed on decaying plant or animal matter and smaller organisms. · Food is ingested through the pharynx. · Planarians eliminate excess water through a network of excretory tubules. · Each tubule is connected to several flame cells. · The water is transported through the tubules and excreted from pores on the body surface. Class Turbellaria Continued Neural Control in Planarians · The planarian nervous system is more complex than the nerve net of cnidarians. · The cerebral ganglia serve as a simple brain. · A planarian’s nervous system gives it the ability to learn. · Planarians sense light with eyespots. · Other sensory cells respond to touch, water currents, and chemicals in the environment.
    [Show full text]
  • Culture of Brachionus Plicatilis Feeding with Powdered Dried Chlorella
    The Bangladesh Veterinarian (2010) 27(2) : 91 – 98 Culture of Brachionus plicatilis feeding with powdered dried Chlorella S. Mostary1*, M. S. Rahman, A. S. M. S. Mandal, K. M. M. Hasan2, Z. Rehena2 and S. M. A. Basar1 Departments of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh Abstract The rotifer Brachionus plicatilis was cultured with powdered dried Chlorella in treatment 1, live or fresh cultured Chlorella in treatment 2, and baker’s yeast in treatment 3. All the jars under three treatments were stocked with B. plicatilis at the initial density of 10 individuals per ml. The water temperature, air temperature, pH and dissolved oxygen were within the suitable range for B. plicatilis culture. The highest population densities of B. plicatilis in treatments 1, 2 and 3 were 60000, 50000 and 30000 (individual/L), respectively. The powered dried Chlorella was comparable with live Chlorella and may be used successfully as a feed for B. plicatilis. (Bangl. vet. 2010. Vol. 27, No. 2, 91 – 98) Introduction Brachionus plicatilis is a brackishwater rotifer, which has been used as food for marine fish larvae and planktonic crustaceans throughout the world (Watanable et al., 1983). But several authors have demonstrated the importance of rotifers as food for freshwater larvae (Hale and Carlson, 1972). B. plicatilis has been recognized as a potential food for shrimp larvae in addition to or as a replacement for Artemia (Hirata et al., 1985). In order to attain stable mass production of rotifers, it is desirable to develop a food source that will support rotifer growth completely by itself.
    [Show full text]
  • Flatworms/ Rotifers 1) Clade (Clades Are a Group of Related Phylum) Platyzoa A) Platyzoa Consist of 6 Phyla, However Most of T
    Flatworms/ Rotifers 1) Clade (clades are a group of related phylum) Platyzoa a) Platyzoa consist of 6 phyla, however most of these phyla are represented by a very small number of species and are debated on where they fall taxonomically. b) These organisms represent the beginning or bilateral symmetry i) For organisms like sponges and Cnidarians it is to their advantage to be radial symmetrical because they can collect food from any angle ii) However now organisms show a distinct head and tail end and better movement to go after food items 2) Phylum Platyhelminthes a) This is the group of flat worms. b) It consist of four classes c) All but one class are parasitic in nature d) Feeding i) Platyhelminthes have an incomplete gut. ii) Most have a mouth, pharynx, and intestine (1) The advancement of having a small intestine increases surface area and thus increases the amount of nutrients absorbed. iii) Many of the non-parasitic species have a pharynx (connection between mouth and intestines) that has the ability to extend out of the mouth in order to gather resources. iv) Parasitic forms have to have some specialized feeding apparatus to extract nutrients from their host without causing too much harm. e) Sense organs i) Here is also an evolutionary advancement in nerve cells (1) The simplest forms are similar to Cnidarians, however, others have in addition one or more longitudinal nerve cords creating a “ladder” style pattern. (2) Towards the superior end there is a cluster of nerves that serves as a rudimentary brain ii) Tactile cells (cells that detect pressure) and chemoreceptors (cells that stimulate in response to a chemical) are abundant all over the body.
    [Show full text]
  • 3585 the BIOLOGY of NEMATODES, ROTIFERS, BRYOZOANS, and SOME MINOR PHYLA Grade Levels: 9-12 19 Minutes ENVIRONMENTAL MEDIA CORPORATION 1997 DESCRIPTION
    #3585 THE BIOLOGY OF NEMATODES, ROTIFERS, BRYOZOANS, AND SOME MINOR PHYLA Grade Levels: 9-12 19 minutes ENVIRONMENTAL MEDIA CORPORATION 1997 DESCRIPTION Grab a stocking net and go hunting for fascinating creatures in the nearest pond or moss bed. Microphotography and graphics closely reveal the physical characteristics of nematodes, rotifers, bryozoans, and other minor protist phyla. Discusses digestion, elimination, and reproduction. Highlights their similarities and differences. Notes the human-infecting nematodes: pinworms, hookworms, and trichina. ACADEMIC STANDARDS Subject Area: Science ¨ Standard: Knows about the diversity and unity that characterize life · Benchmark: Knows different ways in which living things can be grouped (e.g., plants/animals; pets/nonpets; edible plants/nonedible plants) and purposes of different groupings · Benchmark: Knows that plants and animals progress through life cycles of birth, growth and development, reproduction, and death; the details of these life cycles are different for different organisms ¨ Standard: Understands basic Earth processes · Benchmark: Knows that fossils provide evidence about the plants and animals that lived long ago and the nature of the environment at that time · Benchmark: Knows the composition and properties of soils (e.g., components of soil such as weathered rock, living organisms, products of plants and animals; properties of soil such as color, texture, capacity to retain water, ability to support plant growth) 1 Captioned Media Program VOICE 800-237-6213 – TTY 800-237-6819 – FAX 800-538-5636 – WEB www.cfv.org Funding for the Captioned Media Program is provided by the U. S. Department of Education SUMMARY Nematodes: Roundworms are seldom seen but easily found. Tree moss, leaf litter and compost piles swarm with nematodes.
    [Show full text]
  • 1 Monitoring of the Bioencapsulation of a Probiotic Phaeobacter Strain In
    *Manuscript Click here to view linked References 1 2 Monitoring of the bioencapsulation of a probiotic Phaeobacter strain in the rotifer 3 Brachionus plicatilis using denaturing gradient gel electrophoresis 4 5 José Pintado1*, María Pérez-Lorenzo1,2, Antonio Luna-González1,3, Carmen G. Sotelo1, 6 María J. Prol1 and Miquel Planas1 7 8 1Instituto de Investigacións Mariñas (CSIC), Eduardo Cabello nº 6, 36208 Vigo, 9 Galicia, Spain. 10 2 Present address: Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 11 36310 Vigo, Galicia, Spain. 12 3 Present address: Centro Interdisciplinario de Investigación para el Desarrollo Integral 13 Regional-Instituto Politécnico Nacional, Unidad Sinaloa. Boulevard Juan de Dios Bátiz 14 Paredes 250, Guasave, Sinaloa 81101, México 15 16 17 *Corresponding author: Phone +34986231930. Fax +34986292762. E-mail address: 18 [email protected]. 19 20 Abstract 21 22 The bioencapsulation of the probiotic bacteria Phaeobacter 27-4 in the rotifer 23 Brachionus plicatilis was monitored by culture methods and denaturing gradient gel 24 electrophoresis (DGGE) of PCR-amplified 16S rDNA. 25 In a first experiment, the permanence of the probiotic bacteria in clear water and green 26 water was studied. Phaeobacter 27-4 added to the water of the tanks (107 CFU ml-1) 27 remained at levels around 106 CFU ml-1 for 72 h and was not affected by the presence of 28 the algae added (Isochrysis galbana, 105 cells ml-1). The DGGE fingerprints showed a 29 temporal predominance of the probiont in the water and the presence of bacteria 30 belonging to the Flavobacteria, -proteobacteria, and Sphingobacteria groups.
    [Show full text]
  • Rotifer Culturing
    Live Feeds for Zebrafish Aquatics Lab Services LLC 1112 Nashville Street Erik Sanders B.S. RALAT St. Peters, MO 63376 +1-314-724-3800 www.aquaticslabservices.com [email protected] 5th Annual International Zebrafish Husbandry Course Presentation Summary . Live feed Advantages/disadvantages . Most common live feed choices . Artemia . Pros and Cons . Hatching and feed-out procedure . Paramecia . Pros and Cons . Culture and Feed-out Procedure . Rotifers . Pros and Cons . Culture and Feed-out Procedure . Frozen/Freeze Dried 5th Annual International Zebrafish Husbandry Course Live Diets – WHY?? •The main identifiable components of the diet were zooplankton and insects… •Insects that could be identified to order were primarily dipterans… •The majority of insects were aquatic species, or aquatic larval forms of terrestrial •species, with dipteran larvae being particularly common during the monsoon months (June to August). •…the zebrafish appears to feed chiefly on zooplankton in the water column.. From: Diet, growth and recruitment of wild zebrafish in Bangladesh; Spence et al, Journal of Fish Biology (2007) 71, 304–309 doi:10.1111/j.1095-8649.2007.01492.x 5th Annual International Zebrafish Husbandry Course Live Diets Advantages Disadvantages - Amenability to mass - Can be variable in culture nutritional profile - Good nutritional profiles - Can be labor intensive (particularly when enriched) - Can be a source of - Digestible pathogens - Attractive (motility, smell, - Not efficient always as color, shape) size of fish scales up - Zebrafish are adapted to feed on it, and have co- evolved with it 5th Annual International Zebrafish Husbandry Course Live feed types: Artemia . Aquatic crustacean . Most commonly used live feed for zebrafish of all life stages? - Many in the field (mistakenly) believe that the fish “require” it.
    [Show full text]
  • Nemertean and Phoronid Genomes Reveal Lophotrochozoan Evolution and the Origin of Bilaterian Heads
    Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Author Yi-Jyun Luo, Miyuki Kanda, Ryo Koyanagi, Kanako Hisata, Tadashi Akiyama, Hirotaka Sakamoto, Tatsuya Sakamoto, Noriyuki Satoh journal or Nature Ecology & Evolution publication title volume 2 page range 141-151 year 2017-12-04 Publisher Springer Nature Macmillan Publishers Limited Rights (C) 2017 Macmillan Publishers Limited, part of Springer Nature. Author's flag publisher URL http://id.nii.ac.jp/1394/00000281/ doi: info:doi/10.1038/s41559-017-0389-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) ARTICLES https://doi.org/10.1038/s41559-017-0389-y Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Yi-Jyun Luo 1,4*, Miyuki Kanda2, Ryo Koyanagi2, Kanako Hisata1, Tadashi Akiyama3, Hirotaka Sakamoto3, Tatsuya Sakamoto3 and Noriyuki Satoh 1* Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans—a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understand- ing of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their ori- gins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sis- ter to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deu- terostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not.
    [Show full text]
  • Ecological and Genetic Aspects of the Population Biology of the Littoral Rotifer Euchlanis Dilatata
    UNLV Retrospective Theses & Dissertations 1-1-1989 Ecological and genetic aspects of the population biology of the littoral rotifer Euchlanis dilatata Elizabeth Jensen Walsh University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Walsh, Elizabeth Jensen, "Ecological and genetic aspects of the population biology of the littoral rotifer Euchlanis dilatata" (1989). UNLV Retrospective Theses & Dissertations. 2954. http://dx.doi.org/10.25669/s2xt-3g8q This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • Rotifers: Excellent Subjects for the Study of Macro- and Microevolutionary Change
    Hydrobiologia (2011) 662:11–18 DOI 10.1007/s10750-010-0515-1 ROTIFERA XII Rotifers: excellent subjects for the study of macro- and microevolutionary change Gregor F. Fussmann Published online: 1 November 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Rotifers, both as individuals and as a nature. These features make them excellent eukaryotic phylogenetic group, are particularly worthwhile sub- model systems for the study of eco-evolutionary jects for the study of evolution. Over the past decade dynamics. molecular and experimental work on rotifers has facilitated major progress in three lines of evolution- Keywords Rotifer phylogeny Á Asexuality Á ary research. First, we continue to reveal the phy- Eco-evolutionary dynamics logentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolu- Introduction tionary transitions occur and how evolutionary strat- egies can be maintained over millions of years. In the Rotifers are microscopic invertebrates that occur in case of rotifers, we are challenged to explain the freshwater, brackish water, in moss habitats, and in soil evolution of obligate asexuality (in the bdelloids) as (Wallace et al., 2006). Rotifers are particularly fasci- mode of reproduction and how speciation occurs in nating and suitable objects for the study of evolution the absence of sex. Recent research with bdelloid roti- and, over the past decade, featured prominently in fers has identified novel mechanisms such as horizon- research on both macro- and microevolutionary tal gene transfer and resistance to radiation as factors change. I, here, review the recent developments in potentially affecting macroevolutionary change.
    [Show full text]
  • Cadmium and Morphological Alterations in the Rotifer Philodina Cf
    Cadmium and morphological alterations in the rotifer Philodina cf. roseola (Bdelloidea: Philodinidae) and the worm Aeolosoma hemprichi (Annelida: Aeolosomatidae) Daniela Pérez-Yañez, Danika Ruth Soriano-Martínez, Mendy Eded Damian-Ku, Eduardo Cejudo-Espinosa & Jesús Alvarado-Flores* Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A. C. Cancún, Quintana Roo, México. Calle 8, No. 39, Mz. 29, S.M. 64, C.P. 77500; [email protected], [email protected], [email protected], [email protected], [email protected] * Correspondence Received 23-I-2019. Corrected 29-V-2019. Accepted 27-IX-2019. Abstract: Cadmium is a toxic metal for zooplankton that produces deformations. It is also considered an environmental hazard to aquatic life. Since it has a significant effect in some marine organisms, we used two native zooplankton species from Quintana Roo, Mexico to obtain data regarding cadmium toxicity including the threshold concentration for observable morphological alterations and the percentage of organisms with morpho- logical alterations at the exposure concentrations. We used the rotifer Philodina cf roseola and the oligochaeta Aeolosoma hemprichi, since both feed from the algae Nannochloropsis oculata. Both animals were exposed to a cadmium concentration range from 0.05 mg/l (0.047 mg/l, real concentration) to 10.0 mg/l (9.39 mg/l, real con- centration) for 24 h. The LC50 for cadmium in P. cf roseola was 0.7 mg/l (0.65 mg/l, real concentration), whereas in A. hemprichi was 3.38 mg/l (3.17 mg/l, real concentration). The exposure of cadmium at 0.5 mg/l (0.47 mg/l, real concentration) for less than 24 h induced morphological alterations in the lorica of rotifers, foot deforma- tions, and constriction in the middle part of the body.
    [Show full text]
  • Genes with Spiralian-Specific Protein Motifs Are Expressed In
    ARTICLE https://doi.org/10.1038/s41467-020-17780-7 OPEN Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands Longjun Wu1,6, Laurel S. Hiebert 2,7, Marleen Klann3,8, Yale Passamaneck3,4, Benjamin R. Bastin5, Stephan Q. Schneider 5,9, Mark Q. Martindale 3,4, Elaine C. Seaver3, Svetlana A. Maslakova2 & ✉ J. David Lambert 1 Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental 1234567890():,; program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian- specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages. 1 Department of Biology, University of Rochester, Rochester, NY 14627, USA. 2 Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA. 3 Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA. 4 Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
    [Show full text]