Black Twig Borer

Total Page:16

File Type:pdf, Size:1020Kb

Black Twig Borer Invasive Insects: Risks and Pathways Project BLACK TWIG BORER UPDATED: APRIL 2020 Invasive insects are a huge biosecurity challenge. We profile some of the most harmful insect invaders overseas to show why we must keep them out of Australia. Species Black twig borer / Xylosandrus compactus. Also known as black coffee borer, black coffee twig borer, tea stem borer. Main impacts Kills stems of shrubs and trees and sometimes whole plants, including endangered species. Damages food crops and ornamental plants. Native range East Asia.1 Invasive range South East Asia, Pacific islands, USA, Caribbean Islands, Brazil, Peru, Africa (27 countries).1 Black twig borers in their gallery, which they inoculate with symbiotic fungi that serve as Main pathways of global spread food for adults and larvae. Trade of infested plants, foliage, wood Photo: Raffaele Giurato 1 and packing wood material. 3 attack . The beetle also killed swamp mahogany (E. robustus) during droughts3, ENVIRONMENTAL and has attacked many other Australian IMPACTS OVERSEAS trees grown in Hawaii4. In Hawaii it increases the susceptibility to stem The black twig borer bores into the stems breakage and death of koa (Acacia of shrubs and trees of more than 200 melanoxylon), a Hawaiian wattle closely plant species, often killing shrubs and related to Australian blackwood (A. sometimes large trees. Fungi associated melanoxylon)5. with the beetle that are important for development of their larvae contribute to In Hawaii the beetle is a threat to the damage2. endangered plants, including Hawaii plum (Alectryon macrococcus), which This beetle was called ‘a threat to natural has a population of no more than 3000 ecosystems in Europe’ after infestations individuals, usually ‘partially dead as in Circeo National Park in Italy caused 6 serious declines, with wilting of oaks, bay a result of heavy infestation’ , and the Flueggea trees, mastics, carobs and other trees, and critically endangered hame ( neowawraea 7 the death of young plants 2. This came ) . only five years after the beetle was first detected in Europe in 2011 2. HUMAN AND ECONOMIC IMPACTS In Hawaii the beetles have killed An adult black twig borer. Photo courtesy Australian trees grown in plantations, OVERSEAS Michael C. Thomas, Florida Department notably eucalypts (Eucalyptus pillularis, This beetle attacks many crops including of Agriculture and Consumer Services, E. sideroxylon), brush box (Lophostemon Bugwood.org | CC BY-SA 3.0 mangoes, macadamias, avocadoes, figs, confertus), paperbark (Melaleuca coffee and lychees, and many ornamental leucadendron) and turpentine (Syncarpia 3 plants, including hibiscuses and coral glomulifera) . All of the killed trees had trees1 apparently been vigorous before the . INVASION WATCH: Black twig borer AUSTRALIAN endangered, and 22 endangered 6. NatureServe (2009): Alectryon macrococcus CONCERNS eucalypts, plus large numbers of - Radlk. An Online Encyclopedia of Life. vulnerable species, although some occur Retrieved from http://explorer.natureserve.org/ This black twig borer could threaten a in regions unsuitable for the black twig servlet/NatureServe?searchName=Alectryon+ macrococcus. wide range of Australian plants. Its global borer. distribution suggests it could invade 7. World Conservation Monitoring Centre northern, eastern and south-western So broad are the borer’s tastes that rare (1998): Flueggea neowawraea. The IUCN Red Australia. species in many other Australian genera List of Threatened Species. International Union are likely to be susceptible. Vulnerability for the Conservation of Nature. Retrieved from As noted above, it kills Australian plants to the borer varies between species, so http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS. grown abroad, including eucalypts, brush it is impossible to predict which species T33605A9795540.en. box, paperbarks and turpentine. Other are at serious risk, but the large number 8. Intachat J, Kirton LG (1997): Observations Australian plants attacked in Hawaii of threatened Australian plants and the on insects associated with Acacia mangium in include blackwood (Acacia melanoxylon), wide tastes of the borer suggest that Peninsular Malaysia. Journal of Tropical Forest Science candlenut (Aleurites moluccana), Norfolk some could face extinction if it arrives. 9: 561–564. Island pine (Araucaria heterophylla), 9. Hara AH, Beardsley JW (1976): The beautyberry (Callicarpa pendunculata), Plant Health Australia has identified the biology of the black twig borer, Xylosandrus beach she-oak (Casuarina equisetifolia), black twig borer as a high priority pest compactus (Eichhoff), in Hawaii.Proceedings of 12 the Hawaiian Entomological Society red ironbark (Eucalyptus sideroxylon), of mangoes and a pest of macadamia . 23: 55–70. trees13 Queensland maple (Flindersia brayleyana), . 10. Department of Environment and Science coast hibiscus (Hibiscus tiliaceus), Tahitian (n.d.): Alectryon repandodentatus, WetlandInfo. chestnut (Inocarpus fagifer), macadamia SOURCES Queensland Government. Retrieved from (Macadamia integrifolia) and red cedar https://wetlandinfo.des.qld.gov.au/wetlands/ 1. European and Mediterranean Plant ecology/components/species/?alectryon- (Toona ciliata)4. In Malaysia it damages Protection Organization (2017): EPPO Alert repandodentatus. seedlings of mangium (Acacia mangium), List – Xylosandrus compactus (Coleoptera: 11. Department of the Environment and Energy an Australian wattle grown there in Scolytidae) and its associated fungi. Retrieved 8 (n.d.): Species Profile and Threats Database. plantations . from https://www.eppo.int/ACTIVITIES/ EPBC Act list of threatened flora. Australian plant_quarantine/alert_list_insects/xylosandrus_ Australia has many other native plants Government. Retrieved from http://www. compactus. in genera that are attacked overseas, environment.gov.au/cgi-bin/sprat/public/ Abutilon Acalypha Alectryon 2. Vannini A, Contarini M, Faccoli M, Dalla Valle publicthreatenedlist.pl?wanted=flora. including , , , et al Alpinia Antidesma Bauhinia, Canavalia M, Rodriguez CM, Mazzetto T, . (2017): 12. Plant Health Australia (n.d.): Black , , , First report of the ambrosia beetle Xylosandrus Citrus Claoxylon Colubrina Croton twig borer. Retrieved from http://www. , , , , compactus and associated fungi in the Cryptocarya, Dendrobium, Diospyros, planthealthaustralia.com.au/pests/black-twig- Mediterranean maquis in Italy, and new host- borer/. Erythrina, Ficus, Flueggea, Graptophyllum, pest associations. Bulletin OEPP. 47: 100–103. 13. Plant Health Australia (n.d.): Macadamias. Hibiscus, Jasminum, Metrosideros and Black twig borer, 3. Nelson RE, Davis CJ (1972): Retrieved from http://www.planthealthaustralia. Pipturus, Pittosporum, Rubus, Santalum, a tree killer in Hawaii . USDA Forest Service com.au/industries/macadamias/. Solanum, Syzygium and Vitex4,9. Research Note PSW 274, US Department of Agriculture. Australia has threatened species in ABOUT THIS PROJECT several of the genera attacked overseas, 4. Hara AH, Beardsley JW (1976): The biology of the black twig borer, Xylosandrus compactus including the critically endangered Phillip The Invasive Insects: Risks and (Eichhoff), in Hawaii.Proceedings of the Island hibiscus (Hibiscus insularis) and Pathways Project is a partnership Hawaiian Entomological Society. 23: 55–70. between Monash University and the Invasive two relatives of the endangered Hawaii Species Council. To find out more visit Alectryon repandodentatus 5. Ishihara KL, Corpuz M, Morden CW, plum – , invasives.org.au/risks-and-pathways. 10 Borthakur D (2017): Botany, ecology and endangered in Queensland , and the Acacia koa 11 diversity of in the Hawaiian Islands. federally endangered A. ramiflorus . American Journal of Agricultural and Biological Australia has 30 acacia species listed Sciences. 12: 66–78. federally as endangered or critically INVASION WATCH: Black twig borer.
Recommended publications
  • 'Ala'alahua, Mahoe
    Plants ʹAlaʹalahua, mahoe Alectryon macrococcus var. auwahiensis SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species IUCN Red List Ranking ‐ CR B2ab(i,ii,iii,iv,v) Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1T1) Endemism ‐ Maui Kim and Forest Starr, USGS Critical Habitat ‐ Designated SPECIES INFORMATION: Alectryon macrococcus of the soapberry family (Sapindaceae) is a tree up to 36 ft (11 m) tall with reddish brown branches. The leaves are usually 8 to 22 in (20 to 55 cm) long, typically with two to five pairs of egg‐shaped, slightly asymmetrical leaflets. Glossy and smooth above, the leaves have a conspicuous netted pattern of veins. A dense covering of rust‐colored hairs persists on the lower surfaces of mature leaves of A. macrococcus var. auwahiensis, whereas the mature leaves of A. macrococcus var. macrococcus lack hairs or are only slightly hairy. In both varieties, the flowers, which may be either bisexual or male, are borne in branched clusters up to l2 in (30 cm) long and lack petals. The fruit of this tree provided food for the early Hawaiians, as both the seed and the scarlet‐colored, fleshy aril around it have mild but slightly sweet flavors. The two varieties recognized for this species are Federally Listed as Endangered. The first, variety macrococcus, is found on four Hawaiian islands. The second, discussed here, is variety auwahiensis, found only on the island of Maui, and is much rarer. DISTRIBUTION: A. macrococcus var. auwahiensis is found only on the island of Maui, on the south slope of the volcano Haleakalā, at elevations of 1,017 and 3,562 m (1,168 and 3,337 ft).
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • (Rattus Spp. and Mus Musculus) in The
    CHAPTER SIX: CONCLUSIONS Aaron B. Shiels Department of Botany University of Hawaii at Manoa 3190 Maile Way Honolulu, HI. 96822 173 Along with humans, introduced rats (Rattus rattus, R. norvegicus, and R. exulans) and mice (Mus musculus) are among the most invasive and widely distributed mammals on the planet; they occur on more than 80% of the world‘s islands groups (Atkinson 1985; Towns 2009). By incorporating modern technology, such as aerial broadcast of rodenticides, the number of islands where invasive rodents can be successfully removed has recently increased (Howald et al. 2007). However, successful rat and mouse eradication on relatively large (> 5000 ha) or human-inhabited islands such as the main Hawaiian Islands rarely occurs (Howald et al. 2007) despite large sums of money and research efforts annually to combat invasive rodent problems (see Chapter 1 section ―Rat history in Hawaii‖; Tobin et al. 1990). Therefore, it is highly unlikely that invasive rats and mice will be eradicated from relatively large, human-occupied islands such as Oahu in the near or distant future (Howald et al. 2007); and accepting this may be a first step towards increasing the likelihood of native species conservation in archipelagos like Hawaii where introduced rodents have established. Determining which invasive rodent species are present at a given site is important because the risks that some rodent species pose to particular (prey) species and/or habitats differ from those posed by other rodent species. Two sympatric species cannot occupy the same niche indefinitely, in a stable environment (Gause 1934), which may partly explain why some rodent species may not occur where others are present (Harper 2006).
    [Show full text]
  • Chemical Constituents from Flueggea Virosa and the Structural Revision of Dehydrochebulic Acid Trimethyl Ester
    molecules Article Chemical Constituents from Flueggea virosa and the Structural Revision of Dehydrochebulic Acid Trimethyl Ester Chih-Hua Chao 1,2,*, Ying-Ju Lin 3,4, Ju-Chien Cheng 5, Hui-Chi Huang 6, Yung-Ju Yeh 5, Tian-Shung Wu 7,8, Syh-Yuan Hwang 9 and Yang-Chang Wu 1,2,10,11,* 1 School of Pharmacy, China Medical University, Taichung 40402, Taiwan 2 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan 3 School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 4 Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan 5 Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan; [email protected] (J.-C.C.); [email protected] (Y.-J.Y.) 6 Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; [email protected] 7 Department of Pharmacy, National Cheng Kung University, Tainan 70101, Taiwan; [email protected] 8 Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan 9 Endemic Species Research Institute, Council of Agriculture, Nantou 55244, Taiwan; [email protected] 10 Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan 11 Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan * Correspondence: [email protected] (C.-H.C.); [email protected] (Y.-C.W.); Tel.: +886-4-2205-3366 (ext. 5157) (C.-H.C.) Academic Editor: Derek J. McPhee Received: 9 August 2016; Accepted: 12 September 2016; Published: 16 September 2016 Abstract: In an attempt to study the chemical constituents from the twigs and leaves of Flueggea virosa, a new terpenoid, 9(10!20)-abeo-ent-podocarpane, 3β,10α-dihydroxy-12-methoxy-13- methyl-9(10!20)-abeo-ent-podocarpa-6,8,11,13-tetraene (1), as well as five known compounds were characterized.
    [Show full text]
  • Recovery Plan for Tyoj5llllt . I-Bland Plants
    Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S.
    [Show full text]
  • Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles
    insects Article Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles (Coleoptera; Buprestidae and Scolytinae) and Associated Predators Giacomo Cavaletto 1,*, Massimo Faccoli 1, Lorenzo Marini 1 , Johannes Spaethe 2 , Gianluca Magnani 3 and Davide Rassati 1,* 1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16–35020 Legnaro, Italy; [email protected] (M.F.); [email protected] (L.M.) 2 Department of Behavioral Physiology & Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; [email protected] 3 Via Gianfanti 6, 47521 Cesena, Italy; [email protected] * Correspondence: [email protected] (G.C.); [email protected] (D.R.); Tel.: +39-049-8272875 (G.C.); +39-049-8272803 (D.R.) Received: 9 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Simple Summary: Several wood-associated insects are inadvertently introduced every year within wood-packaging materials used in international trade. These insects can cause impressive economic and ecological damage in the invaded environment. Thus, several countries use traps baited with pheromones and plant volatiles at ports of entry and surrounding natural areas to intercept incoming exotic species soon after their arrival and thereby reduce the likelihood of their establishment. In this study, we investigated the performance of eight trap colors in attracting jewel beetles and bark and ambrosia beetles to test if the trap colors currently used in survey programs worldwide are the most efficient for trapping these potential forest pests. In addition, we tested whether trap colors can be exploited to minimize inadvertent removal of their natural enemies.
    [Show full text]
  • List 01 Hawaiian Names 01 Plants
    V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri­ tory and well acquainted with its plants from a layman's stand­ point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se­ cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at­ tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na­ tives and Kahunas (priests) in the various islands of the group.
    [Show full text]
  • United States of America
    anran Forestry Department Food and Agriculture Organization of the United Nations GLOBAL FOREST RESOURCES ASSESSMENT COUNTRY REPORTS NITED TATES OF MERICA U S A FRA2005/040 Rome, 2005 FRA 2005 – Country Report 040 UNITED STATES OF AMERICA The Forest Resources Assessment Programme Sustainably managed forests have multiple environmental and socio-economic functions important at the global, national and local scales, and play a vital part in sustainable development. Reliable and up- to-date information on the state of forest resources - not only on area and area change, but also on such variables as growing stock, wood and non-wood products, carbon, protected areas, use of forests for recreation and other services, biological diversity and forests’ contribution to national economies - is crucial to support decision-making for policies and programmes in forestry and sustainable development at all levels. FAO, at the request of its member countries, regularly monitors the world’s forests and their management and uses through the Forest Resources Assessment Programme. This country report forms part of the Global Forest Resources Assessment 2005 (FRA 2005), which is the most comprehensive assessment to date. More than 800 people have been involved, including 172 national correspondents and their colleagues, an Advisory Group, international experts, FAO staff, consultants and volunteers. Information has been collated from 229 countries and territories for three points in time: 1990, 2000 and 2005. The reporting framework for FRA 2005 is based on the thematic elements of sustainable forest management acknowledged in intergovernmental forest-related fora and includes more than 40 variables related to the extent, condition, uses and values of forest resources.
    [Show full text]
  • Xylosandrus Compactus (Coleoptera: Scolytidae - Black Twig Borer) Is a Highly Polyphagous Pest of Woody Plants Which Has Recently Been Reported from Italy and France
    EPPO, 2020 Mini data sheet on Xylosandrus compactus Added to the EPPO Alert List in 2017 – Deleted in 2020 Reasons for deletion: Xylosandrus compactus and its associated fungi have been included in EPPO Alert List for more than 3 years and during this period no particular international action was requested by the EPPO member countries. In 2020, the Working Party on Phytosanitary Regulations agreed that it could be deleted, considering that sufficient alert has been given. Why: Xylosandrus compactus (Coleoptera: Scolytidae - black twig borer) is a highly polyphagous pest of woody plants which has recently been reported from Italy and France. It probably originates from Asia and has been introduced to other parts of the world, most probably with trade of plants and wood. In parts of Italy (Lazio), serious damage has recently been observed on Mediterranean maquis plants in a natural environment. As this pest might also present a risk to many woody plants in nurseries, plantations, orchards, parks and gardens, scientists who had observed this outbreak in Lazio recommended that X. compactus should be added to the EPPO Alert List. Where: X. compactus is widely distributed in Africa, Asia and South America. It has been introduced in the Pacific Islands, New Zealand, Southeastern USA, and more recently in Europe in Italy and Southern France. X. compactus is thought to originate from East Asia. EPPO region: Italy (first found in 2011 - Campania, Lazio, Liguria, Sicilia and Toscana), France (first found in 2016 - Provence-Alpes-Côte-d’Azur region), Greece (first found in 2019), Spain (Baleares only). Africa: Benin, Cameroon, Central African Republic, Comoros, Congo, Congo (Democratic Republic of), Cote d'Ivoire, Equatorial Guinea, Gabon, Ghana, Guinea, Guinea-Bissau, Kenya, Liberia, Madagascar, Mauritania, Mauritius, Nigeria, Reunion, Senegal, Seychelles, Sierra Leone, South Africa, Tanzania, Togo, Uganda, Zimbabwe.
    [Show full text]
  • Auwahi: Ethnobotany of a Hawaiian Dryland Forest
    AUWAHI: ETHNOBOTANY OF A HAWAIIAN DRYLAND FOREST. A. C. Medeiros1, C.F. Davenport2, and C.G. Chimera1 1. U.S. Geological Survey, Biological Resources Division, Haleakala Field Station, P.O. Box 369, Makawao, HI 96768 2. Social Sciences Department, Maui Community College, 310 Ka’ahumanu Ave., Kahului, HI 96732 ABSTRACT Auwahi district on East Maui extends from sea level to about 6800 feet (1790 meters) elevation at the southwest rift of leeward Haleakal¯a volcano. In botanical references, Auwahi currently refers to a centrally located, fairly large (5400 acres) stand of diverse dry forest at 3000-5000 feet (915- 1525 meters) elevation surrounded by less diverse forest and more open-statured shrubland on lava. Auwahi contains high native tree diversity with 50 dryland species, many with extremely hard, durable, and heavy wood. To early Hawaiians, forests like Auwahi must have seemed an invaluable source of unique natural materials, especially the wide variety of woods for tool making for agriculture and fishing, canoe building, kapa making, and weapons. Of the 50 species of native trees at Auwahi, 19 species (38%) are known to have been used for medicine, 13 species (26%) for tool-making, 13 species (26%) for canoe building 13 species (26%) for house building, 8 species (16%) for tools for making kapa, 8 species (16%) for weapons 8 species (16%) for fishing, 8 species (16%) for dyes, and 7 species (14 %) for religious purposes. Other miscellaneous uses include edible fruits or seeds, bird lime, cordage, a fish narcotizing agent, firewood, a source of "fireworks", recreation, scenting agents, poi boards, and h¯olua sled construction.
    [Show full text]
  • Republic of Fiji: the State of the World's Forest Genetic Resources
    REPUBLIC OF FIJI This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. STATE OF THE FOREST GENETIC RESOURCES IN FIJI Department of Forests Ministry of Fisheries and Forests for The Republic of Fiji Islands and the Secreatriat of Pacific Communities (SPC) State of the Forest Genetic Resources in Fiji _____________________________________________________________________________________________________________________ Table of Contents Executve Summary ………………………………………………………………………………………………………………………..…….. 5 Introduction ………………………………………………………………………………………………………………………………..…….. 6 Chapter 1: The Current State of the Forest Genetic Resources in Fiji ………………………………………………………………….…….
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS THAILAND January 2007 Forest Resources Development Service Working Paper FBS/32E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests – Thailand DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Thailand. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests – Thailand TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]