The Role of Endothelial Cell Specific Chemotaxis Regulator (ECSCR) in Endothelial Cell Biology

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Endothelial Cell Specific Chemotaxis Regulator (ECSCR) in Endothelial Cell Biology The role of Endothelial Cell Specific Chemotaxis Regulator (ECSCR) in endothelial cell biology By Ana Raquel Andrade Veríssimo A Thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Immunity and Infection College of Medical and Dental Sciences The University of Birmingham September 2012 i University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Angiogenesis, although a natural process, when deregulated can be associated with many human pathologies, including cancer. The endothelial cells play a crucial role in the growth and remodelling of the vasculature. A novel unique endothelial marker, endothelial cell specific chemotaxis regulator (ECSCR), has been identified and the aim of this project was to characterise its expression patterns and mechanism of action. In HUVECs the interaction with filamin A was confirmed and immunoprecipitation has pulled down several cytoskeletal proteins involved in cell movement, including moesin, that binds to ECSCR. ECSCR loss causes cytoskeleton to be disorganised and overexpression induces filopodia in HEK 293T cells, but not M2 cells, that do not contain filamin A. In zebrafish ECSCR is restricted to the major trunk and head vasculature, whereas in mouse it appears to be present also in the intersegmental vessels. Morpholino mediated knockdown of zebrafish Escr caused disruption of intersegmental vessel sprouting from the trunk vessels. The original phenotype was successfully rescued. A null Ecscr knockout mouse has been produced and preliminary data show that the deletion is not lethal and ECSCR is present in some small vessels, but not all vasculature. Loss of ECSCR may result in respiratory complications. i ACKNOWLEDGEMENTS First and foremost, I would like to express my gratitude to my supervisor, Professor Roy Bicknell. Thank you very much for all your patience, support and advice. It was a great pleasure and a privilege to be a part of your team. I thank Rajeeb, my supervisor for a year, who taught me a great deal about fish and my other fish supervisor, Dr, Ferenc Mueller. Many thanks to all the Bicknell lab members, past and present, effective and extended, by neighbouring effect. Life would not have been the same without the lunchtime daily crosswords. Thank you to my friends, especially Anabela and Vanessa, for all your friendship and support. Finally, I would like to thank my family, especially my parents, for being there, always. ii TABLE OF CONTENTS Abstract ................................................................................................................................ i Acknowledgements ............................................................................................................. ii Table of CONTENTS ............................................................................................................ iii List of figures ...................................................................................................................... vii Abbreviations .................................................................................................................... viii 1 General introduction ........................................................................................................ 1 1.1 The role of endothelial cells in angiogenesis ...................................................... 2 1.2 Developmental and pathological angiogenesis .................................................. 2 1.3 Targeting angiogenesis ....................................................................................... 3 1.4 The identification and characterization of endothelial cell specific chemotaxis regulator (ECSCR) ............................................................................................................ 6 1.5 Cell migration: the fine orchestration between protrusion, retraction and adhesion ........................................................................................................................ 12 1.5.1 Filopodia and lamellipodia at the leading edge of migrating cells ........... 12 1.5.2 The role of cell-matrix adhesions in cell migration ................................... 16 1.6 Cell-cell adhesion .............................................................................................. 19 1.7 Filamins and cytoskeleton ................................................................................. 19 1.8 Angiogenesis assays and models ...................................................................... 27 1.9 Hypothesis ......................................................................................................... 30 1.10 Aim of the study ................................................................................................ 31 2 Materials and Methods ............................................................................................. 33 2.1 Reagents and equipment .................................................................................. 34 2.1.1 Buffers and solutions ................................................................................ 34 2.1.2 Antibodies ................................................................................................. 37 2.1.3 Cloning vectors .......................................................................................... 39 2.1.4 Oligonucleotides ....................................................................................... 40 2.2 Mammalian cell culture and related techniques .............................................. 43 2.2.1 Mammalian cells ....................................................................................... 43 2.2.2 Cell culture ................................................................................................ 43 2.2.3 siRNA knock down of ECSCR in HUVECs ................................................... 45 iii 2.2.4 Polyethylenimine (PEI) transfection of HEK 293T cells ............................. 45 2.2.5 Scratch wound assay ................................................................................. 46 2.2.6 Immunofluorescent staining ..................................................................... 47 2.3 Protein analyses and assays .............................................................................. 47 2.3.1 Cell lysis and protein extraction ................................................................ 47 2.3.2 Immunoprecipitation using an anti-ECSCR intracellular (icd) domain antibody 48 2.3.3 SDS-PAGE .................................................................................................. 48 2.3.4 Gel staining of proteins with Coomassie Brilliant Blue ............................. 48 2.3.5 In-gel digestion of proteins separated on SDS-PAGE gel for mass spectrometry analysis ............................................................................................... 49 2.3.6 Expressing zebrafish Ecscr intracellular domain (icd) fused to MBP ........ 50 2.3.7 GST pull down ........................................................................................... 51 2.3.8 Western Blot ............................................................................................. 51 2.3.9 Yeast-two-hybrid assay ............................................................................. 52 2.3.10 Luciferase complementation assay ........................................................... 54 2.4 Molecular biology methods .............................................................................. 55 2.4.1 Bacterial strains and media ....................................................................... 55 2.4.2 DNA amplification by PCR ......................................................................... 56 2.4.3 DNA digestion using restriction enzymes ................................................. 56 2.4.4 Nucleic acids electrophoresis in agarose gel ............................................ 56 2.4.5 Plasmid ligation and bacterial transformation ......................................... 57 2.4.6 Plasmid preparation and purification ....................................................... 57 2.4.7 Cell lysis and RNA extraction ..................................................................... 58 2.4.8 cDNA synthesis .......................................................................................... 58 2.4.9 Quantitative RT-PCR (qPCR) ...................................................................... 59 2.4.10 Microarray ................................................................................................. 59 2.5 Methods employed for in vivo analyses ........................................................... 60 2.5.1 Species and strains .................................................................................... 60 2.5.2 Zebrafish and mouse whole mount in situ hybridization (WISH) ............. 60 2.5.3 Injection of antisense zebrafish Ecscr morpholino oligonucleotides.......
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • SLC2A6 Mouse Monoclonal Antibody [Clone ID: OTI7E3] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA500639 SLC2A6 Mouse Monoclonal Antibody [Clone ID: OTI7E3] Product data: Product Type: Primary Antibodies Clone Name: OTI7E3 Applications: IF, IHC, WB Recommend Dilution: IHC 1:200, WB: 1:200 Reactivity: Human Host: Mouse Isotype: IgG2a Clonality: Monoclonal Immunogen: Full-length protein expressed in 293T cell transfected with human SLC2A6 expression vector Formulation: PBS (pH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1.47 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Predicted Protein Size: 54.5 kDa Gene Name: solute carrier family 2 member 6 Database Link: NP_060055 Entrez Gene 11182 Human Background: Hexose transport into mammalian cells is catalyzed by a family of membrane proteins, including SLC2A6, that contain 12 transmembrane domains and a number of critical conserved residues. Synonyms: GLUT6; GLUT9; HSA011372 Protein Families: Transmembrane This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2020 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 SLC2A6 Mouse Monoclonal Antibody [Clone ID: OTI7E3] – TA500639 Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY SLC2A6 ([RC204391], Right lane) cDNA for 48 hrs and lysed. Equivalent amounts of cell lysates (5 ug per lane) were separated by SDS-PAGE and immunoblotted with anti-SLC2A6.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
    Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets.
    [Show full text]
  • MMRN1 Antibody (Monoclonal) (M02) Mouse Monoclonal Antibody Raised Against a Partial Recombinant MMRN1
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 MMRN1 Antibody (monoclonal) (M02) Mouse monoclonal antibody raised against a partial recombinant MMRN1. Catalog # AT2883a Specification MMRN1 Antibody (monoclonal) (M02) - Product Information Application WB, E Primary Accession Q13201 Other Accession NM_007351 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG2b Kappa Calculated MW 138110 MMRN1 Antibody (monoclonal) (M02) - Additional Information Antibody Reactive Against Recombinant Protein.Western Blot detection against Gene ID 22915 Immunogen (36.74 KDa) . Other Names Multimerin-1, EMILIN-4, Elastin microfibril interface located protein 4, Elastin microfibril interfacer 4, Endothelial cell multimerin, Platelet glycoprotein Ia*, 155 kDa platelet multimerin, p-155, p155, MMRN1, ECM, EMILIN4, GPIA*, MMRN Target/Specificity MMRN1 (NP_031377, 291 a.a. ~ 390 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Detection limit for recombinant GST tagged MMRN1 is approximately 0.1ng/ml as a Dilution capture antibody. WB~~1:500~1000 Format MMRN1 Antibody (monoclonal) (M02) - Clear, colorless solution in phosphate Background buffered saline, pH 7.2 . Multimerin is a massive, soluble protein found Storage in platelets and in the endothelium of blood Store at -20°C or lower. Aliquot to avoid vessels. It is comprised of subunits linked by repeated freezing and thawing. interchain disulfide bonds to form large, variably sized homomultimers. Multimerin is a Precautions factor V/Va-binding protein and may function MMRN1 Antibody (monoclonal) (M02) is for as a carrier protein for platelet factor V. It may research use only and not for use in also have functions as an extracellular matrix diagnostic or therapeutic procedures.
    [Show full text]
  • The EMILIN/Multimerin Family
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE REVIEW ARTICLE published: 06 Januaryprovided 2012 by Frontiers - Publisher Connector doi: 10.3389/fimmu.2011.00093 The EMILIN/multimerin family Alfonso Colombatti 1,2,3*, Paola Spessotto1, Roberto Doliana1, Maurizio Mongiat 1, Giorgio Maria Bressan4 and Gennaro Esposito2,3 1 Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico, Aviano, Italy 2 Department of Biomedical Science and Technology, University of Udine, Udine, Italy 3 Microgravity, Ageing, Training, Immobility Excellence Center, University of Udine, Udine, Italy 4 Department of Histology Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy Edited by: Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Uday Kishore, Brunel University, UK Multimerin1, and Multimerin2) constitute a four member family that in addition to the Reviewed by: shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a Uday Kishore, Brunel University, UK Kenneth Reid, Green Templeton N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and College University of Oxford, UK assemble into high molecular weight multimers. They are predominantly expressed in *Correspondence: the extracellular matrix and contribute to several cellular functions in part associated with Alfonso Colombatti, Division of the gC1q domain and in part not yet assigned nor linked to other specific regions of the Experimental Oncology 2, Centro di sequence. Among the latter is the control of arterial blood pressure, the inhibition of Bacil- Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico, lus anthracis cell cytotoxicity, the promotion of cell death, the proangiogenic function, and 33081 Aviano, Italy.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Renal Physiology
    Renal Physiology Distal Convoluted Tubule | Arohan R. Subramanya*†‡ and David H. Ellison§ ¶ Abstract The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular level. This article provides an update on the distal convoluted tubule, highlighting concepts and pathophysiology relevant to clinical Departments of *Medicine and †Cell practice. Biology, University of Clin J Am Soc Nephrol 9: 2147–2163, 2014. doi: 10.2215/CJN.05920613 Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; ‡Veterans Affairs Introduction structure to glucocorticoids, such as cortisol, and both Pittsburgh Healthcare The distal convoluted tubule (DCT) is the portion aldosterone and cortisol bind to the mineralocorticoid System, Pittsburgh, of the nephron that is immediately downstream of receptor with nearly equal affinity (3). Although min- Pennsylvania; the macula densa. Although the DCT is the shortest eralocorticoid receptors are expressed throughout the Departments of §Medicine and | segment of the nephron, spanning only about 5 mm entire DCT, the DCT2 is sensitive to the actions of Physiology and in length in humans (1), it plays a critical role in a va- aldosterone, because it expresses an enzyme called Pharmacology, riety of homeostatic processes, including sodium chlo- 11-b hydroxysteroid dehydrogenase 2 (11-bHSD2). Oregon Health and ride reabsorption, potassium secretion, and calcium 11-bHSD2 metabolizes cortisol to the inactive metab- Science University, Portland, Oregon; and and magnesium handling.
    [Show full text]
  • Concerted Action of KCNJ15/Kir4.2 and Intracellular Polyamines in Sensing Physiological Electric Fields for Galvanotaxis
    Concerted action of KCNJ15/Kir4.2 and intracellular polyamines in sensing physiological electric fields for galvanotaxis Ken-ichi Nakajima1, Min Zhao1,2 1Department of Dermatology, 2Department of Ophthalmology, School of Medicine, University of California Davis Correspondence to: Min Zhao; Email: [email protected] Keywords: inwardly rectifying K+ channel, polyamine, galvanotaxis, cell migration, electric field Autocommentary to: Nakajima K, Zhu K, Sun YH, Hegyi B, Zeng Q, Murphy CJ, Small JV, Chen-Izu Y, Izumiya Y, Penninger JM, Zhao M. KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat Commun. 2015;6:8532. doi: 10.1038/ncomms9532. PubMed PMID: 26449415; PMCID: PMC4603535 Many motile cells, including epithelial cells, keratinocytes, leukocytes and cancer cells, can sense extracellular weak electric fields (EFs), and migrate directionally, a phenomenon termed electrotaxis/galvanotaxis (1). Direct current EFs have been detected at wounds, tissue lesions and during development in many organisms, including human. The molecular mechanisms by which cell senses extracellular EFs, however, remain largely unknown (1). "Taxis" is the directional movement of a cell (or a free-moving organism) in response to environmental stimuli, and plays fundamental roles at both cellular and tissue levels (2). Many types of taxis have been identified, and some of them are well characterized (2). For example, directional migration of cells toward or away from a soluble chemical compound is known as chemotaxis, and many receptors that are necessary for sensing the chemical compound and transduce its signals to intracellular downstream pathways have been identified and well characterized (3). Previous research demonstrated that galvanotaxis shares some similar signaling pathways with chemotaxis (4).
    [Show full text]