Seasonal Glacier Surface Velocity Fluctuation and Contribution of the Eastern and Western Tributary Glaciers in Amery Ice Shelf, East Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Glacier Surface Velocity Fluctuation and Contribution of the Eastern and Western Tributary Glaciers in Amery Ice Shelf, East Antarctica CZECH POLAR REPORTS 9 (1): 49-60, 2019 Seasonal glacier surface velocity fluctuation and contribution of the Eastern and Western Tributary Glaciers in Amery Ice Shelf, East Antarctica Shridhar Digambar Jawak1,2, Shubhang Kumar3, Alvarinho Joaozinho Luis1, Prashant Hemendra Pandit4*, Sagar Filipe Wankhede1 1Earth System Science Organization (ESSO), National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences (MoES), Headland Sada, Goa 403804, India 2Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, Svalbard Science Park, P.O. Box 156, N-9171, Longyearbyen, Svalbard, Norway 3Centre for Land Resource Management, Central University of Jharkhand, Ranchi 835205, India 4National Bureau of Soil Survey and Land Use planning (NBSS & LUP) - Indian Agriculture Research Institute (IARI), New Delhi 110012, India Abstract Glaciers play a crucial role in the study of the climate change pattern of the Earth. Re- mote sensing with access to large archives of data has the ability to monitor glaciers frequently throughout the year. Therefore, remote sensing is the most beneficial tool for the study of glacier dynamics. Fed by many tributaries from different sides, the Amery Ice Shelf (AIS) is one of the largest ice shelves that drains ice from the Antarctic ice sheet into the Southern Ocean. This study focuses on the eastern and the western tribu- taries of the AIS. The primary objective of the study was to derive the velocity of the tributary glaciers and the secondary objective was to compare variations in their velocities between the summer and winter season. This study was carried on using the European Space Agency’s (ESA) Sentinel-1 satellite’s Synthetic Aperture Radar (SAR) data acquired from the Sentinel data portal. Offset tracking method was applied to the Ground Range Detected (GRD) product of the Sentinel-1 interferometric wide (IW) swath acquisition mode. The maximum velocity in summer was observed to be around 610 m/yr in the eastern tributary glacier meeting the ice shelf near the Pickering Nuna- tak, and around 345 m/yr in the Charybdis Glacier Basin from the western side. The maximum velocity in the winter was observed to be 553 m/yr in the eastern side near the Pickering Nunatak whereas 323 m/yr from the western side in the Charybdis Glacier Basin. The accuracy of the derived glacier velocities was computed using bias and root mean square (RMS) error. For the analysis, the publicly available velocity datasets were used. The accuracy based on RMS error was observed to be 85-90% for both seasons with bias values up to 25 m/yr and root mean square error values up to 30 m/yr. Key words: Antarctic, glacier velocity, offset tracking, synthetic aperture radar DOI: 10.5817/CPR2019-1-5 ——— Received May 7, 2019, accepted June 3, 2019. *Corresponding author: P. H. Pandit <[email protected]>; <[email protected]> Acknowledgements: The authors would like to thank European Space Agency (ESA) for providing Sentinel-1 images available online. We would like to acknowledge Dr. M. Ravichandran, Director, ESSO-NCPOR for his encouragement to carry out the work. The whole study was carried out at the Polar Remote Sensing Division of NCPOR, Goa. 49 S. D. JAWAK et al. Abbreviations: AIS – Amery Ice Shelf, CGB – Charybdis Glacier Basin, CM – Clemence Massif, ESA – European Space Agency, PN – Pickering Nunatak, SAR – Synthetic Aperture Radar, GRD – Ground Range Detected, IW – Interferometric Wide, POD – Pre- cise Orbit Determination Introduction The cryosphere is one of the most im- in ice dynamics but also to estimate and portant parts of the Earth’s ecosystem. The map the ice motion. interest in the study of glaciers has in- Glacier velocity has been estimated creased rapidly in the past decades as gla- from space using sequential images cap- cier dynamics are affected due to the tured by multiple satellites, by either opti- change in the climatic patterns (Schellen- cal technology or the synthetic aperture berger et al. 2016). Recent advancement in radar (SAR). Although this work was ini- the studies has increased our understand- tially started with the launch of optical ing of the mass balance of the ice sheets, sensor satellite Landsat, the SAR sensor their contribution to the sea level rise, and has been the method of choice to map ice the flow dynamics (Rignot 2006, Schellen- velocity. The reason was its ability to op- berger et al. 2016). Regular monitoring and erate in all weather conditions, higher tem- understanding the glacier flow dynamics poral and spatial correlation compared to helps in the assessment of the changes that optical sensors, winter and summer alike, occur in the glacier throughout the year and finer spatial resolution available at the (Joughin 2002). Unfortunately, regular as- time (Mouginot et al. 2017a). The continu- sessment of glaciers through field visits is ous acquisition and the free distribution limited in remote regions of the Earth such of the datasets of Landsat satellite series as Antarctica and Himalayas, due to vari- along with Sentinel satellite programme ous factors including harsh weather and have offered a novel opportunity to study high logistical costs, etc. (e.g. Tong et al. the velocity of polar and Alpine glaciers 2018). The remote location of Antarctica and the ice sheets motions. makes remote sensing the best available One of the significant parameters for technology that could be used for regular examining the variations in the dynamics monitoring and assessment of glaciers and of glaciers and ice streams is the glacier its parameters (Pandit et al. 2018a, Jawak surface velocity, which facilitates mass et al. 2018a). transport from ice sheets to the oceans During the last decades, the progress in (Hanna et al. 2013, Mouginot and Rignot the remote sensing technology has allowed 2015, Wuite et al. 2015). The mass bal- major advancement in the cryosphere study ance of the East Antarctic ice sheet over by providing complete and precise obser- the past two decades remains unclear (Liu vation of the complex pattern of the ice et al. 2017). A study conducted by Gol- sheets and has significantly improved our ledge and Levy (2011) suggests that the understanding of the science of ice flow. ice velocity of outlet glaciers of East Ant- The glacier velocity mapping has been ac- arctica have a dynamic response to en- curately estimated (Fan et al. 2019, Pandit vironmental changes. Thus, the study of et al. 2018b, Jawak et al. 2018a, b; Liu et surface ice flow velocity and its seasonal al. 2017, Jawak et al. 2017). Remote sens- changes needs to be conducted (Liu et al. ing-based observations, in particular, have 2017). made it possible not only to detect changes 50 AIS TRIBUTARY GLACIER VELOCITY The Amery Ice Shelf (AIS), East Ant- InSAR (Tong et al. 2018), speckle tracking arctica is among the largest ice shelves of (Tong et al. 2018, Gray et al. 2001) and off- Antarctica. Various studies (Joughin 2002, set tracking (Sánchez-Gámez and Navarro Tong et al. 2018, Manson et al. 2000, 2017, Strozzi et al. 2002) on SAR data, Pittard et al. 2015, King et al. 2007) have feature tracking (Fukuda et al. 2014) on been performed to estimate the annual ve- optical data, and many more. Of these locity of the AIS and the tributary glaciers methods, velocity estimation using offset contributing to its flow from the western tracking has been previously carried out in and eastern side, as well as the head of the various regions including mountain gla- glacier. Unfortunately, very few studies ciers such as the Andes (Riveros et al. have focused on the estimation of seasonal 2013), the Himalayas (Satyabala 2016) and glacier velocity variations in the AIS and continental glacier of Antarctica (Gomez its surrounding glaciers. Since outlet gla- et al. 2019). The study conducted by Sán- ciers are more susceptible to variations in chez-Gámez and Navarro (2017) in Cana- climatic patterns than the inland glaciers dian Arctic included both offset tracking (Scambos et al. 2004, Zhou et al. 2014), as well as DInSAR method and concluded understanding the seasonal variations in that both the techniques resulted in good surface velocity of these outlet glaciers accuracy and complemented each other. helps in better assessment of the changes The objectives of the current study that occur in the glaciers as inland glaciers were (1) to estimate the ice flow velocity are less affected by the climate change as of the eastern and western tributary gla- compared to outlet glaciers. ciers of the AIS, East Antarctica and (2) to Several methods have been used in the compare the variation in the summer and past to estimate glacier velocity such as winter season velocity of the tributary gla- e.g. Interferometric SAR (Joughin 2002, ciers using offset tracking method on SAR Tong et al. 2018) (InSAR), Differential data. Material and Methods Study Area The AIS represents one of the fastest al. 2001). The current study (Fig. 1) was glaciers in Antarctica. The glacier is typi- conducted on the four major tributary gla- cal by high surface velocities and drains cier that contributes to the flow of the AIS 16% of the mass from the interior of Ant- both from the eastern and the western side arctica (Gray et al. 2001, Jawak et al. 2019). of the ice shelf. The two major glaciers The temperature variation ranges between from the eastern side meet the AIS near 0°C to 10°C within single a day during sum- the Clemence Massif (CM) region and the mer. In winter, the daytime temperature Pickering Nunatak (PN). The other two gla- varies between -15°C and -18°C (Jawak et ciers meet the AIS from the western side al.
Recommended publications
  • Flow of the Amery Ice Shelf and Its Tributary Glaciers
    18th Australasian Fluid Mechanics Conference Launceston, Australia 3-7 December 2012 Flow of the Amery Ice Shelf and its Tributary Glaciers M. L. Pittard1 2 , J. L. Roberts3 2, R. C. Warner3 2, B.K Galton-Fenzi2, C.S. Watson4 and R. Coleman1 1Institute for Marine and Antarctic Studies University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia 2Antarctic Climate & Ecosystems Cooperative Research Centre University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia 3Department of Sustainability, Environment, Water, Population and Communities, Australian Antarctic Division Hobart, Tasmania, Australia 4 School of Geography and Environmental Studies University of Tasmania, Private Bag 76, Hobart, Tasmania 7001, Australia Abstract thickness across the grounding zone to provide information on ice discharge. Strain rates and vorticity can be used to investi- The Amery Ice Shelf (AIS) is a major ice shelf that drains ap- gate the dynamics of the flow. The longitudinal strain rate gives proximately 16% of the East Antarctic Ice Sheet [1]. Here we insight into the way the velocity changes along the flow and use a sequence of visible spectrum Landsat7 satellite images may reflect influences of features beneath the ice. The shear to track persistent surface features over the southern portion of component of the strain rate highlights the localisation of shear the AIS and its three major tributary glaciers. A spatially in- stresses at the margin of the flow. Vorticity displays a combina- complete velocity field is calculated by comparing the distances tion of rotation in flow direction and strong shear deformations. features have moved between image pairs. Key features of the flow field including the vorticity and strain rate distributions are The AIS is one of the largest ice shelves bordering the East discussed.
    [Show full text]
  • Glaciomarine Sedimentation at the Continental Margin of Prydz Bay, East Antarctica: Implications on Palaeoenvironmental Changes During the Quaternary
    Alfred-Wegener-Institut für Polar- und Meeresforschung Universität Potsdam, Institut für Erd- und Umweltwissenschaften Glaciomarine sedimentation at the continental margin of Prydz Bay, East Antarctica: implications on palaeoenvironmental changes during the Quaternary Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin “Geowissenschaften” eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Andreas Borchers Potsdam, 30. November 2010 Das Höchste, wozu der Mensch gelangen kann, ist das Erstaunen. J. W. von Goethe Acknowledgements This dissertation would not have been possible without the support and help of numerous people to whom I would like to express my gratitude. First, I am highly indebted to PD Dr. Bernhard Diekmann for the possibility to conduct this work under his supervision and for his constant support, whenever discussion or advice was needed. I appreciated his vast expertise and knowledge of marine geology, sedimentology and Quaternary Science that he so enthusiastically shared with me, adding considerably to my experience. Besides being a full-hearted geologist, he is also a great guitarist, which I enjoyed during the past years, especially during the expeditions I had the chance to participate. I would also like to thank Prof. Dr. Hans-Wolfgang Hubberten for his general support and understanding, giving me the opportunity to broaden my knowledge of marine geology in the field. Using the infrastructure of the institute in Potsdam, Bremerhaven and on the world’s oceans has made a major contribution realizing this work. I am deeply grateful to Prof. Dr. Ulrike Herzschuh and Dr. Gerhard Kuhn who provided a large part of assistance by discussions, constructive advices and moral support.
    [Show full text]
  • History of Benthic Colonisation Beneath the Amery Ice Shelf, East Antarctica
    Vol. 344: 29–37, 2007 MARINE ECOLOGY PROGRESS SERIES Published August 23 doi: 10.3354/meps06966 Mar Ecol Prog Ser History of benthic colonisation beneath the Amery Ice Shelf, East Antarctica Alexandra L. Post1,*, Mark A. Hemer1, Philip E. O’Brien1, Donna Roberts2, Mike Craven3 1Marine and Coastal Environment Group, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia 2Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, Tasmania 7001, Australia 3Australian Antarctic Division and Antarctic Climate and Ecosystems Co-operative Research Centre, Private Bag 80, Hobart, Tasmania 7001, Australia ABSTRACT: This study presents compelling evidence for a diverse and abundant seabed community that developed over the course of the Holocene beneath the Amery Ice Shelf, East Antarctica. Fossil analysis of a 47 cm long sediment core revealed a rich modern fauna dominated by filter feeders (sponges and bryozoans). The down-core assemblage indicated a succession in the colonisation of this site. The lower portion of the core (before ~9600 yr BP) was completely devoid of preserved fauna. The first colonisers (at ~10 200 yr BP) were mobile benthic organisms. Their occurrence was matched by the first appearance of planktonic taxa, indicating a retreat of the ice shelf following the last glaciation to within sufficient distance to advect planktonic particles via bottom currents. The benthic infauna and filter feeders emerged during the peak abundance of the planktonic organisms, indicating their dependence on the food supply sourced from the open shelf waters of Prydz Bay. Understanding patterns of species succession in this environment has important implications for determining the potential significance of future ice shelf collapse.
    [Show full text]
  • Ocean-Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves
    Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves Yan Liua,b, John C. Moorea,b,c,d,1, Xiao Chenga,b,1, Rupert M. Gladstonee,f, Jeremy N. Bassisg, Hongxing Liuh, Jiahong Weni, and Fengming Huia,b aState Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; bJoint Center for Global Change Studies, Beijing 100875, China; cArctic Centre, University of Lapland, 96100 Rovaniemi, Finland; dDepartment of Earth Sciences, Uppsala University, Uppsala 75236, Sweden; eAntarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia; fVersuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland; gDepartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143; hDepartment of Geography, McMicken College of Arts & Sciences, University of Cincinnati, OH 45221-0131; and iDepartment of Geography, Shanghai Normal University, Shanghai 200234, China Edited by Anny Cazenave, Centre National d’Etudes Spatiales, Toulouse, France, and approved February 10, 2015 (received for review August 7, 2014) Iceberg calving from all Antarctic ice shelves has never been defined as the calving flux necessary to maintain a steady-state directly measured, despite playing a crucial role in ice sheet mass calving front for a given set of ice thicknesses and velocities along balance. Rapid changes to iceberg calving naturally arise from the the ice front gate (2, 3). Estimating the mass balance of ice sporadic detachment of large tabular bergs but can also be shelves out of steady state, however, requires additional in- triggered by climate forcing.
    [Show full text]
  • Draft Comprehensive Environmental Evaluation of New Indian Research Base at Larsemann Hills, Antarctica
    Draft Comprehensive Environmental Evaluation of New Indian Research Base at Larsemann Hills, Antarctica 4. ALTERNATIVES TO PROPOSED ACTIVITY A review of the Indian Antarctic Programme was undertaken by an Expert Committee (Rao, 1996), which recommended broadening of India’s scientific data base in Antarctica for having a regional spread of the data rather than a localized one. A Task Force was, therefore, constituted to go into the details and recommend a suitable site after considering all the pros and cons. This Task Force undertook reconnaissance traverses all along the eastern coast of Antarctica from India Bay at 11° E. longitude to 78°E longitude in Prydz Bay, to examine all possible alternatives suiting the scientific and logistic requirements set for the future station. 4.1 Alternative Locations at Regional Level Three alternatives were suggested in the Review Report, mentioned above, based on the scrutiny of published literature and feedback from different Indian and international expeditions to Antarctica. These were: a) Antarctic Peninsula, b) Filchner Ice shelf c) Amery Ice shelf – Prydz Bay area 4.1.1 Antarctic Peninsula Antarctic Peninsula is the most crowded place in Antarctica, so far as the stations of different nations and the visits of the tourists to the icy continent are concerned. The area is also very sensitive to the global warming as has been demonstrated by the international studies, which have shown that the Peninsula has warmed by 2° C since 1950 (Cook et al., 2005). 4.1.2 Filchner Ice Shelf The Filchner Ice Shelf poses serious logistic constraints in maintaining a research station as the sea ice condition in this area are very tough.
    [Show full text]
  • Properties of a Marine Ice Layer Under the Amery Ice Shelf, East Antarctica
    Journal of Glaciology, Vol. 55, No. 192, 2009 717 Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica Mike CRAVEN,1 Ian ALLISON,1 Helen Amanda FRICKER,2 Roland WARNER1 1Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, Hobart, Tasmania 7001, Australia E-mail: [email protected] 2Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California–San Diego, La Jolla, California 92093-0225, USA ABSTRACT. The Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 Æ 0.2 m a–1, at a reference density of 920 kg m–3 between borehole sites, and infer a similar average rate of 1.3 Æ 0.2 m a–1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions.
    [Show full text]
  • Investigation of Glacial Dynamics in Lambert Glacial Basin
    INVESTIGATION OF GLACIAL DYNAMICS IN LAMBERT GLACIAL BASIN USING SATELLITE REMOTE SENSING TECHNIQUES A Dissertation by JAEHYUNG YU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Geography INVESTIGATION OF GLACIAL DYNAMICS IN LAMBERT GLACIAL BASIN USING SATELLITE REMOTE SENSING TECHNIQUES A Dissertation by JAEHYUNG YU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Hongxing Liu Committee Members, Andrew G. Klein Vatche P. Tchakerian Mahlon Kennicutt Head of Department, Douglas Sherman December 2005 Major Subject: Geography iii ABSTRACT Investigation of Glacial Dynamics in Lambert Glacial Basin Using Satellite Remote Sensing Techniques. Jaehyung Yu, B.S., Chungnam National University; M.S., Chungnam National University Chair of Advisory Committee: Dr. Hongxing Liu The Antarctic ice sheet mass budget is a very important factor for global sea level. An understanding of the glacial dynamics of the Antarctic ice sheet are essential for mass budget estimation. Utilizing a surface velocity field derived from Radarsat three-pass SAR interferometry, this study has investigated the strain rate, grounding line, balance velocity, and the mass balance of the entire Lambert Glacier – Amery Ice Shelf system, East Antarctica. The surface velocity increases abruptly from 350 m/year to 800 m/year at the main grounding line. It decreases as the main ice stream is floating, and increases to 1200 to 1500 m/year in the ice shelf front.
    [Show full text]
  • Snow Eagle 601”
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 XXIV ISPRS Congress (2020 edition) FIELD OPERATIONS AND PROGRESS OF CHINESE AIRBORNE SURVEY IN EAST ANTARCTICA THROUGH THE “SNOW EAGLE 601” X. Cui 1,*, J. Guo 1, L. Li 1, X. Tang 1, B. Sun 1 1 Polar Research Institute of China, Jinqiao Road 451, Pudong New District, Shanghai, China - (cuixiangbin, guojingxue, lilin, tangxueyuan, sunbo) @pric.org.cn Commission III, WG III/9 KEY WORDS: Airborne Survey, “Snow Eagle 601”, Princess Elizabeth Land, Radio Echo Sounding, East Antarctica ABSTRACT: The Antarctic plays a vital role in the Earth system. However, our poor knowledge of the Antarctic limits predicting and projecting future climate changes and sea level rising due to rapid changing of the Antarctic. Airborne platforms can access most places of this hostile and remote continent and measure subice properties with high resolution and accuracy. China deployed the first fixed-wing airplane of “Snow Eagle 601” for Antarctic expeditions in 2015. Airborne scientific instruments, including radio-echo sounder, gravimeter, magnetometer, laser altimeter etc., were configured and integrated on the airplane. In the past four years, the airborne platform has been applied to survey the Princess Elizabeth Land, the largest data gap in Antarctica, Amery Ice Shelf and other critical areas in East Antarctica, and overall ~ 150,000 km flight lines have been completed. Here, we introduced the “Snow Eagle 601” airborne platform and base stations, as well as field operations of airborne survey, including aviation supports, daily cycle of the scientific flight, data processing and quality control, and finally summarized progress of airborne survey in the past four years.
    [Show full text]
  • Coastal Change and Glaciological Map of The
    Prepared in cooperation with the Scott Polar Research Institute, University of Cambridge, United Kingdom Coastal-Change and Glaciological Map of the Amery Ice Shelf Area, Antarctica: 1961–2004 By Kevin M. Foley, Jane G. Ferrigno, Charles Swithinbank, Richard S. Williams, Jr., and Audrey L. Orndorff Pamphlet to accompany Geologic Investigations Series Map I–2600–Q 2013 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Foley, K.M., Ferrigno, J.G., Swithinbank, Charles, Williams, R.S., Jr., and Orndorff, A.L., 2013, Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004: U.S. Geological Survey Geologic Investigations Series Map I–2600–Q, 1 map sheet, 8-p.
    [Show full text]
  • Monitoring the Amery Ice Shelf Front During 2004−2012 Using ENVISAT ASAR Data
    · Letter· Advances in Polar Science doi: 10.3724/SP.J.1085.2013.00133 June 2013 Vol. 24 No. 2: 133-137 Monitoring the Amery Ice Shelf front during 2004−2012 using ENVISAT ASAR data ZHAO Chen1,2*, CHENG Xiao1,2, HUI Fengming1,2, KANG Jing1,2, LIU Yan1,2, WANG Xianwei1,2, WANG Fang1,2, CHENG Cheng1,2, FENG Zhunzhun1,2, CI Tianyu1,2, ZHAO Tiancheng1,2 & ZHAI Mengxi1,2 1 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100875, China; 2 College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Received 22 February 2013;accepted 17 April 2013 Abstract The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the total circumference of the Antarc- tic continent. In this study, we used a time series of ENVISAT ASAR images from 2004–2012 and flow lines derived from surface velocity data to monitor the changes in 12 tributaries of the Amery Ice Shelf front. The results show that the Amery Ice Shelf has been expanding and that the rates of expansion differ across the shelf. The highest average annual rate of advance from 2004–2012 was 3.36 m∙d-1 and the lowest rate was 1.65 m∙d-1. The rates in 2009 and 2010 were generally lower than those in other years.
    [Show full text]
  • Modelling the Ocean Circulation Beneath the Ross Ice Shelf DAVID M
    Antarctic Science 15 (1): 13–23 (2003) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102003001019 Modelling the ocean circulation beneath the Ross Ice Shelf DAVID M. HOLLAND1, STANLEY S. JACOBS2 and ADRIAN JENKINS3 1Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA [email protected] 2Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, NY 10964, USA 3British Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge CB3 0ET, UK Abstract: We applied a modified version of the Miami isopycnic coordinate ocean general circulation model (MICOM) to the ocean cavity beneath the Ross Ice Shelf to investigate the circulation of ocean waters in the sub-ice shelf cavity, along with the melting and freezing regimes at the base of the ice shelf. Model passive tracers are utilized to highlight the pathways of waters entering and exiting the cavity, and output is compared with data taken in the cavity and along the ice shelf front. High Salinity Shelf Water on the western Ross Sea continental shelf flows into the cavity along the sea floor and is transformed into Ice Shelf Water upon contact with the ice shelf base. Ice Shelf Water flows out of the cavity mainly around 180º, but also further east and on the western side of McMurdo Sound, as observed. Active ventilation of the region near the ice shelf front is forced by seasonal variations in the density structure of the water column to the north, driving rapid melting. Circulation in the more isolated interior is weaker, leading to melting at deeper ice and refreezing beneath shallower ice.
    [Show full text]
  • Mapping Velocity of the Potsdam Glacier, East Antarctica Using Landsat-8 Data
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands MAPPING VELOCITY OF THE POTSDAM GLACIER, EAST ANTARCTICA USING LANDSAT-8 DATA S. D. Jawak1, M. Joshi2,3,*, A. J. Luis4, P. H. Pandit5, S. Kumar6, S. F. Wankhede4, Anirudh T. Somadas7 1Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, University Centre in Svalbard (UNIS), P.O. Box 156, N-9171, Longyearbyen, Svalbard, Norway; [email protected] 2Department of Geoinformatics, Mangalore University, Mangalore, Karnataka─574199, India 3Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, Karnataka – 560012; [email protected] 4Earth System Science Organization - National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da -Gama, Goa 403804, India; [email protected], [email protected] 5National Bureau of Soil Survey and Land Use planning (NBSS & LUP) - Indian Agriculture Research Institute (IARI), New Delhi, India; [email protected] 6Centre for Land Resource Management, Central University of Jharkhand, Ranchi – 835205, India; [email protected] 7University of Twente, Faculty ITC, P. O. Box 217, 7500 AE Enschede, Netherlands; [email protected] KEY WORDS: Glacier velocity, image matching, pixel tracking, Landsat-8 OLI, Antarctic glacier ABSTRACT: Most of the glaciers have been retreating and thinning globally due to climate change. Glacier velocity is one such important parameter of glacier dynamics, which helps to understand the mass balance. The variations in velocity at different areas of the glacier can be used to identify the zones of ablation and accumulation.
    [Show full text]