Subarcsecond Mid-Infrared Observations of Ngc 6240: Limitations of Active Galactic Nucleus–Starburst Power Diagnostics1 E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Star Formation in NGC 6240
A&A 415, 103–116 (2004) Astronomy DOI: 10.1051/0004-6361:20034183 & c ESO 2004 Astrophysics Nuclear star formation in NGC 6240 A. Pasquali1,2,J.S.Gallagher3, and R. de Grijs4 1 ESO/ST-ECF, Karl-Schwarzschild-Strasse 2, 85748 Garching bei M¨unchen, Germany 2 Institute of Astronomy, ETH H¨onggerberg, 8093 Z¨urich, Switzerland 3 University of Wisconsin, Department of Astronomy, 475 N. Charter St., Madison WI 53706, USA e-mail: [email protected] 4 University of Sheffield, Department of Physics and Astronomy, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK e-mail: [email protected] Received 12 August 2003 / Accepted 6 November 2003 Abstract. We have made use of archival HST BVIJH photometry to constrain the nature of the three discrete sources, A1, A2 and B1, identified in the double nucleus of NGC 6240. STARBURST99 models have been fitted to the observed colours, under the assumption, first, that these sources can be treated as star clusters (i.e. single, instantaneous episodes of star formation), and subsequently as star-forming regions (i.e. characterised by continuous star formation). For both scenarios, we estimate ages as young as 4 million years, integrated masses ranging between 7 106 M (B1) and 109 M (A1) and a rate of 1 supernova per × 1 year, which, together with the stellar winds, sustains a galactic wind of 44 M yr− . In the case of continuous star formation, 1 a star-formation rate has been derived for A1 as high as 270 M yr− , similar to what is observed for warm Ultraluminous 3 Infrared Galaxies (ULIRGs) with a double nucleus. -
Observational Studies of the Galaxy Peculiar Velocity Field
OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases. -
Evidence of Enhanced Star Formation Efficiency in Luminous And
Astronomy & Astrophysics manuscript no. main c ESO 2018 October 24, 2018 Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies⋆ J. Graci´a-Carpio1,2, S. Garc´ıa-Burillo2, P. Planesas2, A. Fuente2, and A. Usero2,3 1 FRACTAL SLNE, Castillo de Belmonte 1, Bloque 5 Bajo A, E-28232 Las Rozas de Madrid, Spain 2 Observatorio Astron´omico Nacional (OAN), Observatorio de Madrid, Alfonso XII 3, E-28014 Madrid, Spain 3 Centre for Astrophysics Research, University of Hertfordshire, College Lane, AL10 9AB, Hatfield, UK e-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Received 4 July 2007; accepted 4 December 2007 ABSTRACT We present new observations made with the IRAM 30m telescope of the J=1–0 and 3–2 lines of HCN and HCO+ used to probe the dense molecular gas content in a sample of 17 local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These observations have allowed us to derive an updated version of the power law describing the correlation between the FIR luminosity ′ (LFIR) and the HCN(1–0) luminosity (LHCN(1−0)) of local and high-redshift galaxies. We present the first clear observational evidence ′ that the star formation efficiency of the dense gas (SFEdense), measured as the LFIR/LHCN(1−0) ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies, a result that has also been found recently in high-redshift galaxies. This may imply a statistically 11 significant turn upward in the Kennicutt-Schmidt law derived for the dense gas at LFIR ≥ 10 L⊙. -
Ophiuchus - the Serpant Bearer
May 18 2021 Ophiuchus - The Serpant Bearer Observed: No Object Her Type Mag Alias/Notes IC 4589 Non-Existent Single Star NGC 6059 Non-Existent IC 4622 Non-Existent IC 4625 Non-Existent NGC 6240 IC 4626 Non-Existent Single Star IC 4627 Non-Existent IC 4629 Non-Existent NGC 6294 Non-Existent IC 1243 Non-Existent IC 1247 Non-Existent Single Star NGC 6360 Non-Existent IC 4657 Non-Existent IC 4659 Non-Existent NGC 6413 Non-Existent NGC 6481 Non-Existent NGC 6525 Non-Existent IC 4675 Non-Existent Sub Total: 17 Observed: Yes Object Her Type Mag Alias/Notes CR 331 Open Cl II 1 m 9.5 Tr 26 Harvard 15 DOL 27 Open Cl IV 2 p n Dolidze 27 HP 1 Globular 12.5 IC 1242 Glxy S? 14.7 UGC 10718 MCG 1-44-1 CGCG 54-2 IRAS 17062+406 PGC 59688 IC 1255 Glxy S 14.2 UGC 10826 MCG 2-44-3 CGCG 82-23 IRAS 17207+1244 PGC 60180 IC 1257 Globular 13.1 IC 4603 Brt Nebula R IC 4604 Brt Nebula R Rho Ophiuchi LBN 1111 IC 4634 Pl Neb 2a+3 10.7 ESO 587-1 Henize 2-189 Sanduleak 2-164 IC 4665 Open Cl III 2 m 4.2 IC 4676 Glxy 15.6 CGCG 84-13 PGC 61317 IC 4688 Glxy Scd: 13.8 UGC 11125 MCG 2-46-6 CGCG 84-18 PGC 61441 IC 4691 Glxy 15.5 CGCG 84-19 PGC 61456 MAC 1723+1234 Glxy 16.5 MINK 2-9 Pl Neb ?+6 14.6 PK 10+18.2 PNG 10.8+18.0 Minkowski 2-9 NGC 6171 H40-6 Globular X 7.8 M 107 NGC 6218 Globular 6.1 M 12 NGC 6220 Glxy SA(s)ab? 14.5 UGC 10541 CGCG 25-4 PGC 58979 NGC 6234 Glxy 15.5 MCG 1-43-7 CGCG 53-18 ARAK508 PGC 59144 NGC 6235 H584-2 Globular X 8.9 NGC 6240 Glxy I0: pec 12.9 IC 4625 PGC 59186 UGC 10592 MCG 0-43-4 CGCG 25-11 VV 617 IRAS 16504+228 NGC 6254 Globular 6.6 M 10 NGC 6266 -
An Outline of Stellar Astrophysics with Problems and Solutions
An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening .................................. -
Tracing Kinematic (Mis)Alignments in CALIFA Merging Galaxies Stellar and Ionized Gas Kinematic Orientations at Every Merger Stage
Astronomy & Astrophysics manuscript no. final_interKin_jkbb_aanda_corr c ESO 2015 June 15, 2015 Tracing kinematic (mis)alignments in CALIFA merging galaxies Stellar and ionized gas kinematic orientations at every merger stage J.K. Barrera-Ballesteros1; 2,?, B. García-Lorenzo1; 2, J. Falcón-Barroso1; 2, G. van de Ven3, M. Lyubenova3; 4, V. Wild5, J. Méndez-Abreu5, S. F. Sánchez6, I. Marquez7, J. Masegosa7, A. Monreal-Ibero8; 9, B. Ziegler10, A. del Olmo7, L. Verdes-Montenegro7, R. García-Benito7, B. Husemann11; 8, D. Mast12, C. Kehrig7, J. Iglesias-Paramo7; 13, R. A. Marino14, J. A. L. Aguerri1; 2, C. J. Walcher8, J. M. Vílchez7, D. J. Bomans15; 16, C. Cortijo-Ferrero7, R. M. González Delgado7, J. Bland-Hawthorn17, D. H. McIntosh18, Simona Bekeraite˙8, and the CALIFA Collaboration (Affiliations can be found after the references) June 15, 2015 ABSTRACT We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. -
Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond
Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2018.xxx. Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond E. Egami1, S. Gallerani2, R. Schneider3, A. Pallottini2,4,5,6, L. Vallini7, E. Sobacchi2, A. Ferrara2, S. Bianchi8, M. Bocchio8, S. Marassi9, L. Armus10, L. Spinoglio11, A. W. Blain12, M. Bradford13, D. L. Clements14, H. Dannerbauer15,16, J. A. Fernández-Ontiveros11,15,16, E. González-Alfonso17, M. J. Griffin18, C. Gruppioni19, H. Kaneda20, K. Kohno21, S. C. Madden22, H. Matsuhara23, P. Najarro24, T. Nakagawa23, S. Oliver25, K. Omukai26, T. Onaka27, C. Pearson28, I. Perez- Fournon15,16, P. G. Pérez-González29, D. Schaerer30, D. Scott31, S. Serjeant32, J. D. Smith33, F. F. S. van der Tak34,35, T. Wada24, and H. Yajima36 1Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA 2Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy 3Dipartimento di Fisica “G. Marconi”, Sapienza Universitá di Roma, P.le A. Moro 2, 00185 Roma, Italy 4Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 5Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 6Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, Roma, 00184, Italy 7Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands 8INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 9INAF, Osservatorio -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Evidence of Enhanced Star Formation Efficiency in Luminous And
A&A 479, 703–717 (2008) Astronomy DOI: 10.1051/0004-6361:20078223 & c ESO 2008 Astrophysics Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies J. Graciá-Carpio1,2, S. García-Burillo2, P. Planesas2,A.Fuente2, and A. Usero2,3 1 FRACTAL SLNE, Castillo de Belmonte 1, Bloque 5 Bajo A, 28232 Las Rozas de Madrid, Spain e-mail: [email protected] 2 Observatorio Astronómico Nacional (OAN), Observatorio de Madrid, Alfonso XII 3, 28014 Madrid, Spain 3 Centre for Astrophysics Research, University of Hertfordshire, College Lane, AL10 9AB, Hatfield, UK e-mail: [s.gburillo;p.planesas;a.fuente;a.usero]@oan.es Received 4 July 2007 / Accepted 4 December 2007 ABSTRACT We present new observations made with the IRAM 30 m telescope of the J = 1−0 and 3–2 lines of HCN and HCO+ used to probe the dense molecular gas content in a sample of 17 local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These observations have allowed us to derive an updated version of the power law describing the correlation between the FIR luminosity (LFIR)andtheHCN(1−0) luminosity (L − ) of local and high-redshift galaxies. We present the first clear observational evidence ffi HCN(1 0) / that the star formation e ciency of the dense gas (SFEdense), measured as the LFIR LHCN(1−0) ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies, a result that has also been found recently in high-redshift galaxies. This may imply a statistically 11 significant turn upward in the Kennicutt-Schmidt law derived for the dense gas at LFIR ≥ 10 L. -
Active Galactic Nuclei - Suzy Collin, Bożena Czerny
ASTRONOMY AND ASTROPHYSICS - Active Galactic Nuclei - Suzy Collin, Bożena Czerny ACTIVE GALACTIC NUCLEI Suzy Collin LUTH, Observatoire de Paris, CNRS, Université Paris Diderot; 5 Place Jules Janssen, 92190 Meudon, France Bożena Czerny N. Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland Keywords: quasars, Active Galactic Nuclei, Black holes, galaxies, evolution Content 1. Historical aspects 1.1. Prehistory 1.2. After the Discovery of Quasars 1.3. Accretion Onto Supermassive Black Holes: Why It Works So Well? 2. The emission properties of radio-quiet quasars and AGN 2.1. The Broad Band Spectrum: The “Accretion Emission" 2.2. Optical, Ultraviolet, and X-Ray Emission Lines 2.3. Ultraviolet and X-Ray Absorption Lines: The Wind 2.4. Variability 3. Related objects and Unification Scheme 3.1. The “zoo" of AGN 3.2. The “Line of View" Unification: Radio Galaxies and Radio-Loud Quasars, Blazars, Seyfert 1 and 2 3.2.1. Radio Loud Quasars and AGN: The Jet and the Gamma Ray Emission 3.3. Towards Unification of Radio-Loud and Radio-Quiet Objects? 3.4. The “Accretion Rate" Unification: Low and High Luminosity AGN 4. Evolution of black holes 4.1. Supermassive Black Holes in Quasars and AGN 4.2. Supermassive Black Holes in Quiescent Galaxies 5. Linking the growth of black holes to galaxy evolution 6. Conclusions Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary We recall the discovery of quasars and the long time it took (about 15 years) to build a theoretical framework for these objects, as well as for their local less luminous counterparts, Active Galactic Nuclei (AGN). -
OPTICAL IMAGING of VERY LUMINOUS INFRARED GALAXY SYSTEMS: PHOTOMETRIC PROPERTIES and LATE EVOLUTION Santiago Arribas,1,2 Howard Bushouse, and Ray A
The Astronomical Journal, 127:2522–2543, 2004 May # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. OPTICAL IMAGING OF VERY LUMINOUS INFRARED GALAXY SYSTEMS: PHOTOMETRIC PROPERTIES AND LATE EVOLUTION Santiago Arribas,1,2 Howard Bushouse, and Ray A. Lucas Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; [email protected], [email protected], [email protected] Luis Colina Instituto de Estructura de la Materia, CSIC, Serrano 119, E-28006 Madrid, Spain; [email protected] and Kirk D. Borne George Mason University, School of Computational Sciences; and NASA Goddard Space Flight Center, Greenbelt, MD 20771; [email protected] Received 2003 November 7; accepted 2004 February 17 ABSTRACT 11 A sample of 19 low-redshift (0:03 < z < 0:07), very luminous infrared galaxy [VLIRG: 10 L < L(8– 12 1000 m) < 10 L ] systems (30 galaxies) has been imaged in B, V,andI using ALFOSC with the Nordic Optical Telescope. These objects cover a luminosity range that is key to linking the most luminous infrared galaxies with the population of galaxies at large. As previous morphological studies have reported, most of these objects exhibit features similar to those found in ultraluminous infrared galaxies (ULIRGs), which suggests that they are also undergoing strong interactions or mergers. We have obtained photometry for all of these VLIRG systems, the individual galaxies (when detached), and their nuclei, and the relative behavior of these classes has been studied in optical color-magnitude diagrams. The observed colors and magnitudes for both the systems and the nuclei lie parallel to the reddening vector, with most of the nuclei having redder colors than the galaxy disks. -
An ISOCAM Survey Through Gravitationally Lensing Galaxy Clusters. IV
Astronomy & Astrophysics manuscript no. 1782ms October 30, 20181 (DOI: will be inserted by hand later) An ISOCAM survey through gravitationally lensing galaxy clusters. ⋆ IV. Luminous infrared galaxies in Cl 0024+1654 and the dynamical status of clusters D. Coia1, B. McBreen1, L. Metcalfe2,3, A. Biviano4, B. Altieri2, S. Ott5, B. Fort6, J.-P. Kneib7,8, Y. Mellier6,9, M.-A. Miville-Deschˆenes10 , B. O’Halloran1,11, and C. Sanchez-Fernandez2 . 1 Department of Experimental Physics, University College, Belfield, Dublin 4, Ireland. 2 XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, P.O. Box 50727, 28080 Madrid, Spain. 3 ISO Data Centre, European Space Agency, Villafranca del Castillo, P.O. Box 50727, 28080 Madrid, Spain. 4 INAF/Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131, Trieste, Italy. 5 Science Operations and Data Systems Division of ESA, ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands. 6 Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France. 7 Observatoire Midi-Pyr´en´ees, 14 avenue Edouard Belin, 31400 Toulouse, France. 8 California Institute of Technology, Pasadena, CA 91125, USA. 9 Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France. 10 Canadian Institute for Theoretical Astrophysics, 60 St-George Street, Toronto, Ontario, M5S 3H8, Canada. 11 Dunsink Observatory, Castleknock, Dublin 15, Ireland. Received 30 July 2003 / Accepted 26 October 2004 Abstract. Observations of the core of the massive cluster Cl 0024+1654, at a redshift z ∼ 0.39, were obtained with the Infrared Space Observatory using ISOCAM at 6.7 µm (hereafter 7 µm) and 14.3 µm (hereafter 15 µm).