Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA As Source of Biochirality?

Total Page:16

File Type:pdf, Size:1020Kb

Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA As Source of Biochirality? S S symmetry Concept Paper Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA as Source of Biochirality? Carsten Tschierske * and Christian Dressel Martin Luther University Halle-Wittenberg, Institute of Chemistry, Kurt-Mothes Str. 2, 06120 Halle, Germany; [email protected] * Correspondence: [email protected] Received: 30 May 2020; Accepted: 15 June 2020; Published: 2 July 2020 Abstract: Recent progress in mirror symmetry breaking and chirality amplification in isotropic liquids and liquid crystalline cubic phases of achiral molecule is reviewed and discussed with respect to its implications for the hypothesis of emergence of biological chirality. It is shown that mirror symmetry breaking takes place in fluid systems where homochiral interactions are preferred over heterochiral and a dynamic network structure leads to chirality synchronization if the enantiomerization barrier is sufficiently low, i.e., that racemization drives the development of uniform chirality. Local mirror symmetry breaking leads to conglomerate formation. Total mirror symmetry breaking requires either a proper phase transitions kinetics or minor chiral fields, leading to stochastic and deterministic homochirality, respectively, associated with an extreme chirality amplification power close to the bifurcation point. These mirror symmetry broken liquids are thermodynamically stable states and considered as possible systems in which uniform biochirality could have emerged. A model is hypothesized, which assumes the emergence of uniform chirality by chirality synchronization in dynamic “helical network fluids” followed by polymerization, fixing the chirality and leading to proto-RNA formation in a single process. Keywords: mirror symmetry breaking; biological chirality; liquid crystals; proto-RNA; networks; compartmentalization; chiral liquids; cubic phases; prebiotic chemistry; chirality amplification; helical self-assembly 1. Introduction-Homochirality and Life Ever since Pasteur revealed the molecular asymmetry of organic compounds in 1848 [1], the origin of the homochirality of biologically relevant molecules has attracted considerable attention. The chirality of organic compounds is due to the tetrahedral structure of carbon with a valence of four bondings to adjacent atoms. Only if all four substituents are different, is the compound chiral and existing as two stereoisomers representing mirror images of each other, differing in their configuration, being either d or l. It is well known that in all existing organisms the carbohydrates exist in the d-form and the amino acids in the l-form (see Figure1; there are also l-sugars and d-amino acids in biological systems, but if they are involved, they fulfill specific functions, see [2]). This homochirality is considered as a signature of life. In the 4.5 billion years (Ga) of the history of Earth, by 4.2–4.3 Ga Earth has cooled sufficiently to be covered by liquid water. Already by 3.95 Ga, the first signatures of life appear as carbon isotope signatures. In this astonishing narrow window of only about 200–300 million years (0.2–0.3 Ga), the first cells came to existence, meaning that mirror symmetry must have been broken and the genetic code developed during this, on a geological time scale, amazingly short period Symmetry 2020, 12, 1098; doi:10.3390/sym12071098 www.mdpi.com/journal/symmetry Symmetry 2020, 12, 1098 2 of 30 Symmetry 2020, 12, x FOR PEER REVIEW 2 of 30 oflife abiogenesis and the mechanism [3]. The origin of the of thechirogenesis homochirality remain of the an molecules unsolved of problem life and thein the mechanism hypotheses of the of chirogenesisdevelopment remain of life an [4–7]. unsolved The focus problem of chirogenesis in the hypotheses was most of developmently on the carbohydrates of life [4–7]. The and focus amino of chirogenesisacids being wasintrinsically mostly on chiral, the carbohydrates as described and in amino numerous acids being contributions intrinsically and chiral, reviews as described [8–23]; inamphiphiles numerous contributionswere also considered and reviews [24]. [However,8–23]; amphiphiles there are werealso biologically also considered relevant [24]. molecules, However, there or at areleast also building biologically blocks relevant of such molecules, molecules, or which at least are building achiral, blocks because of suchthey molecules,are built up which of carbons are achiral, with becauseonly three they substituents, are built up ofand carbons these withcompounds only three wi substituents,th trigonal carbons and these are compounds flat. Among with them, trigonal the carbonspyrimidine are und flat. purine Among bases them, (N the-heterocycles) pyrimidine involved und purine in basesthe nucleic (N-heterocycles) acids form involvedthe basis inof thethe nucleicgenetic acidscode formof RNA/DNA, the basis of thewhich genetic developed code of RNAduring/DNA, abiogenesis. which developed Helical duringself-assembly abiogenesis. (for Helicalexample, self-assembly predominately (for single example, helices predominately for RNA and single double helices helices for RNA for DNA) and double is an helicesimportant for DNA)consequence is an important of molecular consequence chirality and of molecular simultaneously chirality provides and simultaneously a source of homochirality. provides a source It does of homochirality.not require molecular It does not chirality, require and molecular therefore chirality, it can and also therefore be formed it can under also beachiral formed conditions under achiral with conditionsachiral molecules with achiral [25–30]. molecules Helical [ 25superstructures–30]. Helical superstructures are not only formed are not onlyas crystalline formed as assemblies, crystalline assemblies,fibers and gels fibers [31–38], and gels they [31 are–38 also], they common are also in common soft matter in soft systems matter and systems fluids, and where fluids, they where can occur they canspontaneously occur spontaneously [25,26,39–42] [25,26 or,39 induced–42] or inducedby an intern by anal internal or external or external source source of chirality of chirality [43–45]. [43 –Soft45]. Softself-assembly self-assembly in fluids in fluids is of special is of special interest interest for chirogenesis, for chirogenesis, as life most as life likely most developed likely developed in aqueous in aqueousfluids. fluids. Figure 1.1. Biologically relevant chiral and achiral moleculesmolecules andand structures.structures. Herein,Herein, thethe recentlyrecently discovereddiscovered spontaneousspontaneous mirrormirror symmetrysymmetry breakingbreaking inin isotropicisotropic liquidsliquids [[25]25] andand inin liquidliquid crystallinecrystalline (LC) (LC) cubic cubic phases phases [26 [26]] is is discussed discussed under under the the aspect aspect of theirof their relevance relevance for thefor emergencethe emergence of biochirality of biochirality during during abiogenesis. abiogenesis. It is postulated It is postulated that biochirality that biochirality could havecould arisen have byarisen the spontaneousby the spontaneous helical self-assembly helical self-assembly of achiral moleculesof achiral in molecules the liquid state,in the and liquid that synchronizationstate, and that ofsynchronization the helicity of self-assembledof the helicity achiralof self-assembl heteroaromaticed achiral amphiphiles heteroaromatic by the formation amphiphiles of dynamic by the networksformation could of dynamic have been networks the source could of the have developing been the biochirality. source of Itthe is hypothesizeddeveloping biochirality. that early forms It is ofhypothesized RNA could notthat only early have forms acted of RNA as the could first information not only have carrier acted and as catalystthe first in information abiogenesis, carrier but could and alsocatalyst provided in abiogenesis, the biochirality. but could also provided the biochirality. 2. Emergence of Homochirality in Non-Biological Systems-Artificial Chirogenesis 2. Emergence of Homochirality in Non-Biological Systems-Artificial Chirogenesis 2.1. Racemates vs. Conglomerates 2.1. Racemates vs. Conglomerates Based on the fundamentals of stereochemistry, under achiral conditions, chiral molecules are alwaysBased formed on fromthe fundamentals achiral (prochiral) of stereochemistry, substrates as racemic under mixtures achiral conditions, of the two enantiomeric chiral molecules forms are in always formed from achiral (prochiral) substrates as racemic mixtures of the two enantiomeric forms in 1:1 ratio [46]. In these racemic forms, there are intermolecular interactions between the like Symmetry 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/symmetry Symmetry 2020, 12, 1098 3 of 30 1:1Symmetry ratio [46 2020]. In, 12 these, x FOR racemic PEER REVIEW forms, there are intermolecular interactions between the like enantiomers3 of 30 (d/d and l/l) as well as between unlike pairs (d/l) with different energies. Two different situations can beenantiomers distinguished (D/ dependingD and L/L) onas thewell strength as between of the unlike attractive pairs intermolecular (D/L) with different interactions energies. between Two the likedifferent (d/d and situationsl/l) and can unlike be distin (d/l)guished pairs. depending on the strength of the attractive intermolecular interactions between the like (D/D and L/L) and unlike (D/L) pairs. As shown in Figure2a,b, the attractive interactions can be either stronger between the
Recommended publications
  • Influence of Chirality on the Electromagnetic Wave Electrical and Computer Engineering
    Influence of Chirality on the Electromagnetic Wave Propagation: Unbounded Media And Chirowaveguides Priyá Dilipa Gaunço Dessai Dissertation submitted to obtain the Master Degree in Electrical and Computer Engineering Jury President: Professor José Manuel Bioucas Dias Supervisor: Professor Carlos Manuel dos Reis Paiva Co- Supervisor: Professor António Luís da Silva Topa Member Professor Sérgio de Almeida Matos December 2011 Abstract When a chiral medium interacts with the polarization state of an electromag- netic plane wave and couples selectively with either the left or right circularly polarized component, we call this property the optical activity. Since the beginning of the 19th century, the study of complex materials has intensied, and the chiral and bi-isotropic (BI) media have generated one of the most interesting and challenging subjects in the electromagnetic research groups in terms of theoretical problems and potential applications. This dissertation addresses the theoretical interaction between waves and the chiral media. From the study of chiral structures it is possible to observe the eect of the polarization rotation, the propagation modes and the cuto frequencies. The reection and transmission coecients between a simple isotropic media (SIM) and chiral media are also analyzed, as well as the relation between the Brewster angle and the chiral parameter. The BI planar structures are also analyzed for a closed guide, the parallel-plate chirowaveguide, and for a semi-closed guide, the grounded chiroslab. From these structures
    [Show full text]
  • Locally Enhanced and Tunable Optical Chirality in Helical Metamaterials
    hv photonics Article Locally Enhanced and Tunable Optical Chirality in Helical Metamaterials Philipp Gutsche 1,*, Raquel Mäusle 1 and Sven Burger 1,2 1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany; [email protected] (R.M.); [email protected] (S.B.) 2 JCMwave GmbH, Bolivarallee 22, 14050 Berlin, Germany * Correspondence: [email protected]; Tel.: +49-30-841-85-203 Received: 31 October 2016; Accepted: 18 November 2016; Published: 23 November 2016 Abstract: We report on a numerical study of optical chirality. Intertwined gold helices illuminated with plane waves concentrate right and left circularly polarized electromagnetic field energy to sub-wavelength regions. These spots of enhanced chirality can be smoothly shifted in position and magnitude by varying illumination parameters, allowing for the control of light-matter interactions on a nanometer scale. Keywords: metamaterials; optical chirality; computational nano-optics 1. Introduction Helical metamaterials strongly impact the optical response of incident circularly (CPL) and linearly polarized light. They serve as efficient circular polarizers [1] and are candidates for chiral near-field sources [2]. Both, advancement of fabrication techniques [3–5] and design which employs fundamental physical properties [6] have significantly increased the performance of these complex structures. Most experimental, numerical and theoretical studies focus on the far-field response of helical metamaterials. Nevertheless, near-field interaction of light and chiral matter is expected to be enhanced in chiral near-fields. Recently, the quantity of optical chirality has been introduced quantifying this phenomenon [7]. In the weak-coupling regime, the interplay of electromagnetic fields and chiral molecules, which are not superimposable with their mirror image, is directly proportional to this near-field measure [8].
    [Show full text]
  • Chirality in Chemical Molecules
    Chirality in Chemical Molecules. Molecules which are active in human physiology largely function as keys in locks. The active molecule is then called a ligand and the lock a receptor. The structures of both are highly specific to the degree that if one atom is positioned in a different position than that required by the receptor to be activated, then no stimulation of the receptor or only partial activation can take place. Again in a similar fashion if one tries to open the front door with a key that looks almost the same than the proper key for that lock, one will usually fail to get inside. A simple aspect like a lengthwise groove on the key which is on the left side instead of the right side, can mean that you can not open the lock if your key is the “chirally incorrect” one. The second aspect to understand is which molecules display chirality and which do not. The word chiral comes from the Greek which means “hand-like”. Our hands are mirror images of each other and as such are not identical. If they were, then we would not need a right hand and left hand glove. We can prove that they are not identical by trying to lay one hand on top of the other palms up. When we attempt to do this, we observe that the thumbs and fingers do not lie on top of one another. We say that they are non-super imposable upon one another. Since they are not the same and yet are mirror images of each other, they are said to exhibit chirality.
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • The Power of Crowding for the Origins of Life
    Orig Life Evol Biosph (2014) 44:307–311 DOI 10.1007/s11084-014-9382-5 ORIGIN OF LIFE The Power of Crowding for the Origins of Life Helen Greenwood Hansma Received: 2 October 2014 /Accepted: 2 October 2014 / Published online: 14 January 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Molecular crowding increases the likelihood that life as we know it would emerge. In confined spaces, diffusion distances are shorter, and chemical reactions produce fewer and more regular products. Crowding will occur in the spaces between Muscovite mica sheets, which has many advantages as a site for life’s origins. Keywords Muscovite mica . Molecular crowding . Origin of life . Mechanochemistry. Abiogenesis . Chemical confinement effects . Chirality. Protocells Cells are crowded. Protein molecules in cells are typically so close to each other that there is room for only one protein molecule between them (Phillips, Kondev et al. 2008). This is nothing like a dilute ‘prebiotic soup.’ Therefore, by analogy with living cells, the origins of life were probably also crowded. Molecular Confinement Effects Many chemical reactions are limited by the time needed for reactants to diffuse to each other. Shorter distances speed up these reactions. Molecular complementarity is another principle of life in which pairs or groups of molecules form specific interactions (Root-Bernstein 2012). Current examples are: enzymes & substrates & cofactors; nucleic acid base pairs; antigens & antibodies; nucleic acid - protein interactions. Molecular complementarity is likely to have been involved at life’s origins and also benefits from crowding. Mineral surfaces are a likely place for life’s origins and for formation of polymeric molecules (Orgel 1998).
    [Show full text]
  • Chiral Metamaterials: Simulations and Experiments
    HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US Chiral metamaterials: simulations and experiments This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Opt. A: Pure Appl. Opt. 11 114003 (http://iopscience.iop.org/1464-4258/11/11/114003) The Table of Contents and more related content is available Download details: IP Address: 139.91.179.8 The article was downloaded on 10/11/2009 at 12:27 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS J. Opt. A: Pure Appl. Opt. 11 (2009) 114003 (10pp) doi:10.1088/1464-4258/11/11/114003 REVIEW ARTICLE Chiral metamaterials: simulations and experiments Bingnan Wang1, Jiangfeng Zhou1, Thomas Koschny1,2,3, Maria Kafesaki2,3 and Costas M Soukoulis1,2,3 1 Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA 2 Institute of Electronic Structure and Laser, FORTH, Heraklion, Crete, 71110, Greece 3 Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 71110, Greece E-mail: [email protected] Received 20 February 2009, accepted for publication 6 May 2009 Published 16 September 2009 Online at stacks.iop.org/JOptA/11/114003 Abstract Electromagnetic metamaterials are composed of periodically arranged artificial structures. They show peculiar properties, such as negative refraction and super-lensing, which are not seen in natural materials. The conventional metamaterials require both negative and negative μ to achieve negative refraction. Chiral metamaterial is a new class of metamaterials offering a simpler route to negative refraction.
    [Show full text]
  • Metamaterials with Magnetism and Chirality
    1 Topical Review 2 Metamaterials with magnetism and chirality 1 2;3 4 3 Satoshi Tomita , Hiroyuki Kurosawa Tetsuya Ueda , Kei 5 4 Sawada 1 5 Graduate School of Materials Science, Nara Institute of Science and Technology, 6 8916-5 Takayama, Ikoma, Nara 630-0192, Japan 2 7 National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, 8 Japan 3 9 Advanced ICT Research Institute, National Institute of Information and 10 Communications Technology, Kobe, Hyogo 651-2492, Japan 4 11 Department of Electrical Engineering and Electronics, Kyoto Institute of 12 Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan 5 13 RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan 14 E-mail: [email protected] 15 November 2017 16 Abstract. This review introduces and overviews electromagnetism in structured 17 metamaterials with simultaneous time-reversal and space-inversion symmetry breaking 18 by magnetism and chirality. Direct experimental observation of optical magnetochiral 19 effects by a single metamolecule with magnetism and chirality is demonstrated 20 at microwave frequencies. Numerical simulations based on a finite element 21 method reproduce well the experimental results and predict the emergence of giant 22 magnetochiral effects by combining resonances in the metamolecule. Toward the 23 magnetochiral effects at higher frequencies than microwaves, a metamolecule is 24 miniaturized in the presence of ferromagnetic resonance in a cavity and coplanar 25 waveguide. This work opens the door to the realization of a one-way mirror and 26 synthetic gauge fields for electromagnetic waves. 27 Keywords: metamaterials, symmetry breaking, magnetism, chirality, magneto-optical 28 effects, optical activity, magnetochiral effects, synthetic gauge fields 29 Submitted to: J.
    [Show full text]
  • Supramolecular Chirality of Hydrogen-Bonded Rosette Assemblies Mercedes Crego-Calama
    Supramolecular chirality of hydrogen-bonded rosette assemblies Mercedes Crego-Calama To cite this version: Mercedes Crego-Calama. Supramolecular chirality of hydrogen-bonded rosette assemblies. Supramolecular Chemistry, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2007, 19 (01-02), pp.95-106. 10.1080/10610270600981716. hal-00513491 HAL Id: hal-00513491 https://hal.archives-ouvertes.fr/hal-00513491 Submitted on 1 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Supramolecular Chemistry For Peer Review Only Supramolecular chirality of hydrogen-bonded rosette assemblies Journal: Supramolecular Chemistry Manuscript ID: GSCH-2006-0028 Manuscript Type: Review Date Submitted by the 31-May-2006 Author: Complete List of Authors: crego-calama, mercedes; University of Twente, SMCT Supramolecular chirality, noncovalent synthesis, amplification of Keywords: chirality, diastereomeric synthesis, enantiomeric synthesis Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. tif.sit URL: http:/mc.manuscriptcentral.com/tandf/gsch Email: [email protected] Page 1 of 20 Supramolecular Chemistry 1 2 3 4 5 Supramolecular chirality of hydrogen-bonded 6 7 rosette assemblies 8 9 10 Socorro Vázquez-Campos, Mercedes Crego-Calama*, and David N.
    [Show full text]
  • Chirality: the Handedness of Molecules
    06 Chirality: The Handedness of Molecules Tartaric acid is found in grapes and other fruits, both free and as its salts (see Section 6.4B). Inset: A model of tartaric acid. (© fatihhoca/iStockphoto) KEY QUESTIONS 6.1 What Are Stereoisomers? 6.9 What Is the Significance of Chirality in the 6.2 What Are Enantiomers? Biological World? 6.3 How Do We Designate the Configuration of a 6.10 How Can Enantiomers Be Resolved? Stereocenter? HOW TO 6.4 What Is the 2n Rule? 6.1 How to Draw Enantiomers 6.5 How Do We Describe the Chirality of 6.2 How to Determine the R & S Configuration Cyclic Molecules with Two Stereocenters? without Rotating the Molecule 6.6 How Do We Describe the Chirality 6.3 How to Determine Whether Two Compounds Are of Molecules with Three or More the Same, Enantiomers, or Diastereomers without Stereocenters? the Need to Spatially Manipulate the Molecule 6.7 What Are the Properties of Stereoisomers? 6.8 How Is Chirality Detected in the CHEMICAL CONNECTIONS Laboratory? 6A Chiral Drugs IN THIS CHAPTER, we will explore the relationships between three-dimensional ob- jects and their mirror images. When you look in a mirror, you see a reflection, or mirror Mirror image The reflection image, of yourself. Now, suppose your mirror image becomes a three-dimensional object. of an object in a mirror. 167 168 CHAPTER 6 Chirality: The Handedness of Molecules We could then ask, “What is the relationship between you and your mirror image?” By relationship, we mean “Can your reflection be superposed on the original ‘you’ in such a way that every detail of the reflection corresponds exactly to the original?” The answer is that you and your mirror image are not superposable.
    [Show full text]
  • The Origin of Biological Homochirality
    Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The Origin of Biological Homochirality Donna G. Blackmond Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037 Correspondence: [email protected] SUMMARY The fact that sugars, amino acids, and the biological polymers they construct exist exclusively in one of two possible mirror-image forms has fascinated scientists and laymen alike for more than a century. Yet, it was only in the late 20th century that experimental studies began to probe how biological homochirality, a signature of life, arose from a prebiotic world that presumably contained equal amounts of both mirror-image forms of these molecules. This review discusses experimental studies aimed at understanding how chemical reactions, physical processes, or a combination of both may provide prebiotically relevant mechanisms for the enrichment of one form of a chiral molecule over the other to allow for the emergence of biological homochirality. Outline 1 Introduction 5 Combining physical and chemical approaches 2 Models for the origin of homochirality 6 Concluding remarks 3 Chemical models References 4 Physical models Editors: Thomas R. Cech, Joan A. Steitz, and John F. Atkins Additional Perspectives on RNA Worlds available at www.cshperspectives.org Copyright # 2019 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a032540 Cite this article as Cold Spring Harb Perspect Biol 2019;11:a032540 1 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press D.G. Blackmond 1 INTRODUCTION (Roozeboom 1899) a half century before the macroscopic helicity of biopolymers was characterized (Pauling et al.
    [Show full text]
  • Chapter 5: Stereoisomerism- Three-Dimensional Arrangement of Atoms (Groups) in Space 5.1 Overview of Isomerism
    Chapter 5: Stereoisomerism- three-dimensional arrangement of atoms (groups) in space 5.1 Overview of Isomerism Isomers: different chemical compounds with the same formula Constitutional isomers: same formula, but different connectivity of atoms (or groups) C5H12 C4H10O C4H11N NH O 2 OH NH2 butanol diethyl ether different carbon skeleton different functional group different position of FG Stereoisomers: molecules with the same connectivity but different spatial arrangement of atoms (groups) H C CH 3 3 H3C H H H H CH3 cis-1,2-dimethylcyclopropane trans-1,2-dimethylcyclopropane H H H CH3 H C CH H C H 3 3 3 93 cis-2-butene trans-2-butene 5.2 Introduction to Stereoisomerism Enantiomers: non-superimposable mirror image isomers. Enantiomers are related to each other much like a right hand is related to a left hand Enantiomers have identical physical properties, e.g., bp, mp, etc. Chirality (derived from the Greek word for hand). Enantiomers are said to be chiral. 94 47 Chirality Center: Chiral molecules most commonly contain a carbon with four different groups; the carbon is referred to as a chiral center, or asymmetric center, or stereogenic center, or stereocenter. H H HO OH CO2H HO2C H3C CH3 H H H CO2H HO HO CO2H CO2H H3C H3C H3C HO CO2H H HO H3C H H H OH HO HO CO2H CO2H H3C H3C HO H CH3 CO2H HO2C H3C 95 5.3 Designating Configuration Using the Cahn-Ingold-Prelog System – Assigning the Absolute Configuration 1a. Look at the four atoms directly attached to the chiral carbon atom and rank them according to decreasing atomic number.
    [Show full text]
  • 7.3 Designating Configuration of Enantiomers
    Hornback_Ch07_219-256 12/14/04 7:00 PM Page 224 224 CHAPTER 7 I STEREOCHEMISTRY II PROBLEM 7.3 Indicate whether each of these objects or molecules has a plane of symmetry: a) Idealized human face b) Pencil c) Ear Cl CH3 O d) e) f) H3CCH3 O Cl± Br± CH g) C 3 h) C CH3 ± H H Cl Cl ± 7.3 Designating Configuration of Enantiomers Suppose we are working with one enantiomer of a chiral compound. How can we indi- cate which enantiomer is being used when writing about it? Or how can we look up the properties of this enantiomer in a reference book? We need a method to designate the configuration of the enantiomer, to denote the three-dimensional arrangement of the four groups around the chirality center, other than drawing the structure. In the case of many everyday chiral objects, the terms right and left are used, as in a left shoe or right- handed golf clubs. In Section 6.2 we learned how to designate the configuration of geo- metrical isomers using the Cahn-Ingold-Prelog sequence rules and the labels Z and E. The method to designate the configuration of enantiomers uses these same rules. The following steps are used to assign the configuration of a chiral compound: STEP 1 Assign priorities from 1 through 4 to the four groups bonded to the chirality center using the Cahn-Ingold-Prelog sequence rules presented in Section 6.2.The group with the highest priority receives number 1, and the lowest-priority group receives number 4.
    [Show full text]