Mir-34A Regulates the Invasive Capacity of Canine Osteosarcoma Cell Lines

Total Page:16

File Type:pdf, Size:1020Kb

Mir-34A Regulates the Invasive Capacity of Canine Osteosarcoma Cell Lines MiR-34a Regulates the Invasive Capacity of Canine Osteosarcoma Cell Lines THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Cecilia Montes Lopez Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2017 Master's Examination Committee: Joelle Fenger, DVM, PhD, DACVIM, Advisor Emma Warry, BVSc (HONS), DACVIM William Kisseberth, DVM, PhD, DACVIM Copyrighted by Cecilia Montes Lopez 2017 Abstract Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well- established spontaneous model of the human disease. Real-time PCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre- miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR- 34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells ii overexpressing miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. iii Dedicated to Aaron Lopez for his incredible support, love, and companionship throughout this journey; to Veronica, Kevin, and Kathleen Montes for their love throughout my life; and in loving memory of Papi, siempre. iv Acknowledgments I would like to sincerely thank my incredible mentor, Dr. Joelle Fenger, for her patient guidance and teaching ability in this project. Thank you for making me excited about science! My gratitude goes out to the veterinary oncology faculty at The Ohio State University, including Drs. Cheryl London, William Kisseberth, Emma Warry, Megan Brown, Eric Green, Noopur Desai, and Vincent Wavreille who have shared their experience and abilities and helped to shape me professionally throughout my residency training. These individuals have helped to make these three years some of the most formative, educational, and progressive of my life. The contribution of the following collaborators was indispensable to this work: Peter Wu for his assistance with miR-34a target identification, and Xiaoli Zhang and Ayse Selen Yilmaz for their efforts with statistical analysis. I would also like to express my gratitude to Tim Vojt of the OSU College of Veterinary Medicine Biomedical Media Services for his assistance in figure preparation, Feng Xu for her technical assistance, and the Veterinary Clinical Research Shared Resource Biospecimen Repository for their assistance in tumor sample acquisition. I would like to thank my past and present residentmates, Pachi Clemente, Megan Brown, Heather Gardner, Rachel Kovac, and Kyle Renaldo, for their encouragement, friendship, and humor. And importantly I would like to thank the veterinary technicians v of the Integrated Oncology Service, Heather Young, Krista Cebulskie, Nicole Pastorek, Matt Kerzie, and Erin Mash, for their good-natured support. vi Vita 2006................................................................Lake Dallas High School 2010................................................................B.S. Biomedical Sciences, Texas A&M University 2013................................................................D.V.M, Texas A&M University 2013-2014 .....................................................Rotating Small Animal Intern, VCA Veterinary Specialty Center of Seattle 2014 to present ...............................................Combined Medical Oncology Residency and Masters Program, The Ohio State University Fields of Study Major Field: Comparative and Veterinary Medicine vii Table of Contents Abstract ............................................................................................................................... ii Acknowledgments............................................................................................................... v Vita .................................................................................................................................... vii Table of Contents ............................................................................................................. viii List of Tables ..................................................................................................................... xi List of Figures ................................................................................................................... xii Chapter 1: Literature Review ............................................................................................. 1 Chapter 1.1 Functions of MicroRNAs in Health and Disease ....................................... 1 Chapter 1.2 MicroRNA Dysregulation in Cancer ........................................................... 2 Chapter 1.3 The miR-34 Family of MicroRNAs in Cancer ........................................... 4 Chapter 1.4 MiR-34 Dysregulation in Human Osteosarcoma ....................................... 6 Chapter 1.5 Comparative Aspects of Human and Canine Osteosarcoma ....................... 8 Chapter 2: MiR-34a Regulates the Invasive Capacity of Canine Osteosarcoma Cell Lines ........................................................................................................................................... 11 2.1 Abstract ................................................................................................................... 11 viii 2.2 Introduction ............................................................................................................. 12 2.3 Materials and Methods ............................................................................................ 15 2.3.1 Cell lines and primary tumor samples .............................................................. 15 2.3.2 RNA isolation, cDNA synthesis, and quantitative real-time PCR ................... 16 2.3.3 MiR-34a lentivirus infection ............................................................................ 17 2.3.4 Assessment of cell proliferation ....................................................................... 18 2.3.5 Cell-cycle analysis ............................................................................................ 18 2.3.6 Matrigel invasion assay .................................................................................... 19 2.3.7 Wound healing assay ........................................................................................ 19 2.3.8 RNA sequencing ............................................................................................... 20 2.3.9 Statistics ............................................................................................................ 21 2.4 Results ..................................................................................................................... 21 2.4.1 MiR-34a expression is decreased in primary canine OSA tumors and canine OSA cell lines ............................................................................................................ 21 2.4.2 MiR-34a expression is decreased in paired canine OSA metastatic lesions compared to primary OSA tumors ............................................................................. 22 2.4.3 Ectopic expression of miR-34a does not influence cell proliferation or cell cycle distribution in canine OSA cell lines ............................................................... 22 2.4.5 RNA sequencing identifies miR-34a-induced gene alterations in canine OSA8 cells ............................................................................................................................ 24 ix 2.4.6 Putative miR-34a target gene expression is increased in primary canine OSA tumors ........................................................................................................................ 25 2.5 Discussion ............................................................................................................... 26 2.6 Future Directions ..................................................................................................... 31 2.7 Conclusions ............................................................................................................. 33 References ......................................................................................................................... 46 Appendix
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • In Vivo Analysis of Exosome Trafficking and Function in Drosophila Melanogaster
    In vivo analysis of exosome trafficking and function in Drosophila melanogaster Senior thesis Presented to The Faculty of the School of Arts and Sciences Brandeis University Undergraduate Program in Biology Professor Avital A. Rodal, PhD, Advisor In partial fulfillment of the requirements for the degree of Bachelor of Science by Anna Yeh May 11, 2016 Copyright by Anna Yeh Committee members Name: _____________________________ Signature: _____________________________ Name: _____________________________ Signature: _____________________________ Name: _____________________________ Signature: _____________________________ 1 Table of Contents 1 Abstract 4 2 Introduction 5 2.1 Exosomes: function and therapeutic applications 6 2.2 Exosome cargo and targeting specificity 6 2.3 Exosomes and the endocytic process 7 2.3.1 Rab proteins play a role in exosome trafficking in the donor cell 7 2.3.2 SNARE machinery is necessary for exosomal trafficking from the donor cell 8 2.3.3 Exosome uptake by the recipient cell 9 2.4 Drosophila as an in vivo model organism to study exosome function and trafficking 10 2.4.1 Physiological function for neuronal exosomes in Drosophila 10 2.4.2 Organismal level of exosome trafficking 11 2.5 Current methods and techniques in exosome research 12 2.5.1 Biochemical approaches for exosome analysis 13 2.5.2 Genetic and molecular biology approaches for in vivo exosome research 14 Methods 16 3.1 Molecular cloning 16 3.1.1 Construction of pattB-13xLexAop2-Sun-5Myc-spGFP11 16 3.1.2 Construction of pUASt-attB-spGFP1-10-WPRE 16 3.1.3
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Synaptotagmin13 Is a Neuroendocrine Marker in Brain, Intestine and Pancreas
    Synaptotagmin13 Is A Neuroendocrine Marker In Brain, Intestine And Pancreas Marta Tarquis-Medina Helmholtz Zentrum München Katharina Scheibner Helmholtz Zentrum München Ismael Gonzalez Garcia Helmholtz Zentrum München Aimée Bastidas-Ponce Helmholtz Zentrum München Michael Sterr Helmholtz Zentrum München Jessica Jaki Helmholtz Zentrum München Silvia Schirge Helmholtz Zentrum München Cristina García-Cáceres Helmholtz Zentrum München Heiko Lickert Helmholtz Zentrum München Mostafa Bakhti ( [email protected] ) Helmholtz Zentrum München Research Article Keywords: Synaptotagmin 13, Syt13, uorescent reporter, endocrine lineage, brain, intestine, pancreas Posted Date: June 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-622505/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Synaptotagmin13 (Syt13) is an atypical member of the vesicle tracking Synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) uorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis- regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage allowing their specic isolation by ow sorting.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Next Generation Sequencing Analysis of Human Platelet Polya Plus Mrnas and Rrna- Depleted Total RNA
    Next Generation Sequencing Analysis of Human Platelet PolyA plus mRNAs and rRNA- Depleted Total RNA Antheia Kissopoulou, Jon Jonasson, Tomas Lindahl and Majid Osman Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Antheia Kissopoulou, Jon Jonasson, Tomas Lindahl and Majid Osman, Next Generation Sequencing Analysis of Human Platelet PolyA plus mRNAs and rRNA-Depleted Total RNA, 2013, PLoS ONE, (8), 12, 81809. http://dx.doi.org/10.1371/journal.pone.0081809 Copyright: Public Library of Science http://www.plos.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103875 Next Generation Sequencing Analysis of Human Platelet PolyA+ mRNAs and rRNA-Depleted Total RNA Antheia Kissopoulou, Jon Jonasson, Tomas L. Lindahl, Abdimajid Osman* Department of Clinical and Experimental Medicine, University of Linko¨ping, Linko¨ping, Sweden Abstract Background: Platelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA. Materials and Methods: We used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT) isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Allosteric Activation of the Nitric Oxide Receptor Soluble Guanylate Cyclase
    RESEARCH ARTICLE Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy Benjamin G Horst1†, Adam L Yokom2,3†, Daniel J Rosenberg4,5, Kyle L Morris2,3‡, Michal Hammel4, James H Hurley2,3,4,5*, Michael A Marletta1,2,3* 1Department of Chemistry, University of California, Berkeley, Berkeley, United States; 2Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 3Graduate Group in Biophysics, University of California, Berkeley, Berkeley, United States; 4Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States; 5California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States Abstract Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71˚ rotation of the heme-binding b H-NOX and PAS domains. Repositioning of the b *For correspondence: H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to [email protected] (JHH); move the catalytic domains into an active conformation. YC-1 binds directly between the b H-NOX [email protected] (MAM) domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was †These authors contributed corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the equally to this work endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological Present address: ‡MRC London effects of NO.
    [Show full text]