Morphology and Anatomy of Leaf Miners in Two Species of Commelinaceae (Commelina Diffusa Burm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on the Parasitoids of the Serpentine Leaf Miner, Liriomyza Trifolii (Burgess) in Tomato Ecosystem Under Mid Hill Condition of Himachal Pradesh
Journal of Biological Control, 25 (4): 320–322, 2011 Research Note Studies on the parasitoids of the serpentine leaf miner, Liriomyza trifolii (Burgess) in tomato ecosystem under mid hill condition of Himachal Pradesh P. L. SHARMA, U*, CHAUHAN, P. R. GUPTA, K. C. SHARMA and S. P. VERMA Department of Entomology and Apiculture, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan (HP) India 173 230 * Corresponding author E mail: [email protected] ABSTRACT: The species diversity of parasitoids of the serpentine leaf miner, Liriomyza trifolii (Burgess) in tomato ecosystem was conducted under mid hill conditions of Himachal Pradesh during 2008-2010. The tomato leaves were collected periodically from June to September from three strata i.e. bottom, middle and top portion of the plants at random. During the course of study four species of larval parasitoids viz., Neochrysocharis formosa (Westwood), Diglyphus sp., Asecodes sp. and Chrysocharis sp. belonging to the family Eulophidae and one species of larval-pupal parasitoid, Opius sp. belonging to the family Braconidae were identified. These parasitoids were active throughout the cropping season and the parasitization ranged from 6.0 – 21.1, 19.4 – 28.6 and 13.6 – 23.1 per cent during 2008, 2009 and 2010, respectively. It was maximum (20.1 – 28.6%) during the month of August. Marginally higher parasitization (14.3 – 26.7%) was observed in the middle stratum of the foliage than in top (11.1 – 24.0%) or bottom (6.7 – 20.0%) stratum during all the three years of study. Among the larval parasitoids, N. -
Biological Control of Liriomyza Leafminers: Progress and Perspective
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work. -
Characterization and Electron Microscopy of a Potyvirus Infecting Commelina Diffusa F
Etiology Characterization and Electron Microscopy of a Potyvirus Infecting Commelina diffusa F. J. Morales and F. W. Zettler Graduate Student and Professor, respectively, Department of Plant Pathology, University of Florida, Gainesville, FL 32611. The authors are grateful to Louise M. Russell, Entomologist, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, and to David Hall, Department of Botany, University of Florida, for the identification of the Aphis and Commelina species, respectively, used in this study. We also appreciate the assistance of T. A. Zitter, Univ. of Florida Agric. Res. and Educ. Center, Belle Glade, for assistance in making surveys in Palm Beach County. Journal Series Paper No. 6187 of the Florida Agricultural Experiment Station. Accepted for publication 11 January 1977. ABSTRACT MORALES, F. J. and F. W. ZETTLER. 1977. Characterization and eletron microscopy of a potyvirus infecting Commelina diffusa. Phytopathology 67: 839-843. A filamentous virus has been discovered that induces with ammonium molybdate. The dilution end-point of mosaic symptoms in Commelina diffusa distinguishable CoMV was 10-' to 10- , its longevity in vitro was 12-20 hr, from those caused by cucumber mosaic virus (CMV). This and the thermal inactivation point was 50-60 C. Leaf extracts virus, herein designated as commelina mosaic virus (CoMV), from CoMV-infected plants did not react in which appears to be a potyvirus, was readily transmitted immunodiffusion tests with antisera prepared to bidens mechanically to C. diffusa but not to 15 other species in nine mottle, blackeye cowpea mosaic, dasheen mosaic, lettuce plant families. Commelina mosaic virus was transmitted in a mosaic, pepper mottle, potato Y, tobacco etch, or turnip stylet-borne manner by Myzus persicaeand Aphis gossypii. -
Cucumber Mosaic Virus in Hawai‘I
Plant Disease August 2014 PD-101 Cucumber Mosaic Virus in Hawai‘i Mark Dragich, Michael Melzer, and Scot Nelson Department of Plant Protection and Environmental Protection Sciences ucumber mosaic virus (CMV) is Pathogen one of the most widespread and The pathogen causing cucumber troublesomeC viruses infecting culti- mosaic disease(s) is Cucumber mo- vated plants worldwide. The diseases saic cucumovirus (Roossinck 2002), caused by CMV present a variety of although it is also known by other global management problems in a names, including Cucumber virus 1, wide range of agricultural and ecologi- Cucumis virus 1, Marmor cucumeris, cal settings. The elevated magnitude Spinach blight virus, and Tomato fern of risk posed by CMV is due to its leaf virus (Ferreira et al. 1992). This broad host range and high number of plant pathogen is a single-stranded arthropod vectors. RNA virus having three single strands Plant diseases caused by CMV of RNA per virus particle (Ferreira occur globally. Doolittle and Jagger et al. 1992). CMV belongs to the first reported the characteristic mosaic genus Cucumovirus of the virus symptoms caused by the virus in 1916 family Bromoviridae. There are nu- on cucumber. The pandemic distribu- merous strains of CMV that vary in tion of cucumber mosaic, coupled with their pathogenicity and virulence, as the fact that it typically causes 10–20% well as others having different RNA yield loss where it occurs (although it Mosaic symptoms associated with satellite virus particles that modify can cause 100% losses in cucurbits) Cucumber mosaic virus on a nau- pathogen virulence and plant disease makes it an agricultural disease of paka leaf. -
Biological Control of Liriomyza Leafminers: Progress and Perspective
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 004 Review Biological control of Liriomyza leafminers: progress and perspective Tong-Xian Liu1*, Le Kang2, Kevin M. Heinz3 and John Trumble4 Address: 1 Department of Entomology, Texas AgriLife Research, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA. 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 3 Department of Entomology, Texas A&M University, College Station, TX, USA. 4 Department of Entomology, University of California, Riverside, CA, USA. *Correspondence: Tong-Xian Liu. Fax. 01 956-968-0641. Email: [email protected] Received: 6 October 2008 Accepted: 15 December 2008 doi: 10.1079/PAVSNNR20094004 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2008 (Online ISSN 1749-8848) Abstract There are more than 330 Liriomyza species (Diptera: Agromyzidae) and many are economically important pests of field crops, ornamentals and vegetables. Given the substantial economic losses associated with various aspects of Liriomyza feeding as well as the ability of these insects to rapidly develop resistance to insecticides, researchers from many countries have attempted to use bio- logical control to manage these pests. Unfortunately, progress on the science and implementation of effective Liriomyza biological control is hampered by the literature being scattered widely and in many different languages. A primary goal of this review is to consolidate the available infor- mation and provide an analysis of the published work. -
Data Sheets on Quarantine Pests
EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Liriomyza trifolii IDENTITY Name: Liriomyza trifolii (Burgess) Synonyms: Liriomyza alliovora Frick Taxonomic position: Insecta: Diptera: Agromyzidae Common names: American serpentine leaf miner, chrysanthemum leaf miner (English) Mineuse du gerbera (French) Floridaminierfliege (German) Bayer computer code: LIRITR EPPO A2 list: No.131 EU Annex designation: I/A2 HOSTS L. trifolii has been recorded from 25 families with preference shown for the Asteraceae, including the following important crops: Aster spp., beetroots, Bidens spp., Brassica chinensis, Capsicum annuum, celery, Chinese cabbages, chrysanthemums, cotton, cucumbers, Dahlia spp., Dianthus spp., garlic, Gerbera spp., Gypsophila spp., Lathyrus spp., leeks, lettuces, lucerne, marrows, melons, onions, peas, Phaseolus coccineus, P. lunatus, P. vulgaris, potatoes, spinach, tomatoes, Tropaeolum spp., Vigna spp., watermelons, Zinnia spp. For more information, see Stegmaier (1968). GEOGRAPHICAL DISTRIBUTION L. trifolii originates in North America and spread to other parts of the world in the 1960- 1980s. A detailed review of its spread is given in Minkenberg (1988). EPPO region: First detected in 1976. Now present in Austria, Belgium, Bulgaria, Cyprus, Egypt, France, Greece, Ireland, Israel, Italy, Lebanon, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain (including Canary Islands), Switzerland, Turkey, Yugoslavia. Eradicated in the Czech Republic, Denmark, Finland, Germany, Hungary, Norway, Sweden, UK. Asia: Cyprus, India (Andhra Pradesh), Israel, Japan (Honshu), Korea Republic, Lebanon, Philippines, Taiwan, Turkey. Africa: Egypt, Ethiopia, Kenya, Mauritius, Nigeria, Réunion, Senegal, South Africa, Tanzania, Tunisia. North America: Canada (Alberta, Nova Scotia, Ontario, Quebec), Mexico (unconfirmed), USA (outside in New Mexico, California, most eastern states from Florida northward to New Jersey, Wisconsin and Iowa; under glass in other southern states). -
Biosystematic Studies on Commelinaceae (Commelinales) I
ISSN 1346-7565 Acta Phytotax. Geobot. 68 (3): 193–198 (2017) doi: 10.18942/apg.201710 Biosystematic Studies on Commelinaceae (Commelinales) I. Phylogenetic Analysis of Commelina in Eastern and Southeastern Asia * CHUNG-KUN LEE , SHIZUKA FUSE AND MINORU N. TAMURA Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. *[email protected] (author for correspondence) Commelina, the pantropical and largest genus in Commelinaceae, consists of ca. 205 species with char- acteristic conduplicate involucral bracts. Previous phylogenetic studies of Commelina, which mainly used African and North American species, suggested that the ancestral character state of the margins of the involucral bracts of Commelina was free and that free to fused occurred only once. To test this evo- lutionary scenario, we performed parsimony and likelihood analyses with partial matK sequences using 25 individuals from 11 species of Commelina, primarily from eastern and southeastern Asia, with An- eilema and Pollia as outgroups. Results showed that Commelina comprises two major clades, one con- sisting of four species, and the other consisting of seven species. Species with free margins of the invo- lucral bracts were in both major clades: C. suffruticosa in the first clade and C. coelestis, C. communis, C. diffusa, C. purpurea and C. sikkimensis in the latter. The phylogenetic trees suggested that the number of shifts is fewer when the ancestral state was fused and that there were two parallel evolutionary trends toward free. Key words: Commelina, Commelina maculata, Commelina paludosa, Commelina suffruticosa, Com- melinaceae, involucral bracts, matK, maximum likelihood, maximum parsimony, phylogeny Commelina L., the largest genus of Com- na to be sister to a clade of Pollia Thunb., Poly- melinaceae Mirb. -
(Commelina Diffusa) with the Fungal Pathogen Phoma Commelinicola
Agronomy 2015, 5, 519-536; doi:10.3390/agronomy5040519 OPEN ACCESS agronomy ISSN 2073-4395 www.mdpi.com/journal/agronomy Article Biological Control of Spreading Dayflower (Commelina diffusa) with the Fungal Pathogen Phoma commelinicola Clyde D. Boyette 1,*, Robert E. Hoagland 2 and Kenneth C. Stetina 1 1 USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS 38776, USA; E-Mail: [email protected] 2 USDA-ARS, Crop Production Systems Research Unit, Stoneville, MS 38776, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-662-686-5217; Fax: +1-662-686-5281. Academic Editor: Rakesh S. Chandran Received: 23 June 2015 / Accepted: 27 October 2015 / Published: 30 October 2015 Abstract: Greenhouse and field experiments showed that conidia of the fungal pathogen, Phoma commelinicola, exhibited bioherbicidal activity against spreading dayflower (Commelina diffusa) seedlings when applied at concentrations of 106 to 109 conidia·mL−1. Greenhouse tests determined an optimal temperature for conidial germination of 25 °C –30 °C, and that sporulation occurred on several solid growth media. A dew period of ≥ 12 h was required to achieve 60% control of cotyledonary-first leaf growth stage seedlings when applications of 108 conidia·mL−1 were applied. Maximal control (80%) required longer dew periods (21 h) and 90% plant dry weight reduction occurred at this dew period duration. More efficacious control occurred on younger plants (cotyledonary-first leaf growth stage) than older, larger plants. Mortality and dry weight reduction values in field experiments were ~70% and >80%, respectively, when cotyledonary-third leaf growth stage seedlings were sprayed with 108 or 109 conidia·mL−1. -
PLANT DISEASES Caused by Viruses & Virus-Like Pathogens in the French Pacific Overseas Country of FRENCH POLYNESIA & the French Pacific Territory of WALLIS & FUTUNA
SPC Techncal Paper No. 226 Surveys for PLANT DISEASES caused by Vruses & Vrus-lke pathogens n the French Pacific Overseas Country of FRENCH POLYNESIA & the French Pacific territory of WALLIS & FUTUNA By R.I. DavisA, L. MuB, A. MalauC, P. JonesD A Plant Protection Service, Secretariat of the Pacific Community (SPC), PMB, Suva, Fiji Islands BService du Développement Rural, Département de la Protection des Végétaux, BP 100, Papeete, French Polynesia CService de l’agriculture à Wallis, Services Territoriaux des Affaires Rurales et de la Peche, BP 19, Mata’utu, 98600 Uvea, Wallis and Futuna Islands D Plant–Pathogen Interactions Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK Published with financial assistance from European Union SPC Land Resources Dvson Suva, Fj October 2006 © Copyright Secretariat of the Pacific Community 2006 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPC authorizes the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission. Orgnal text : Englsh Secretariat of the Pacific Community Cataloguing-in-publication data Davs, R.I. et al. Surveys for plant diseases caused by viruses and virus-like pathogens in the French Pacific overseas country of French Polynesia and the French Pacific territory of Wallis and Futuna / R.I. Davis, L. Mu, A. Malau, P. -
American Serpentine Leafminer: a Threat to Horticulture
R&D | EXOTIC PEST PROFILE L. trifolii damage to chrysanthemum. American serpentine leafminer: A threat to horticulture The American serpentine potato industries, and neither species is L. trifolii larvae feeds internally on living leafminer (Liriomyza trifolii) is a present in Australia. plant tissue, particularly plant leaves, small fly belonging to the family The following is an overview of reducing photosynthetic activity and Liriomyza trifolii (L. trifolii), commonly causing premature leaf drop. Unlike many Agromyzidae. It infects plant known as the American serpentine other leafminers, the American serpentine species from 29 plant families leafminer, focusing on the pest’s biology, leafminer is polyphagous (it has a broad including many vegetable, distribution, effect on horticultural host range from a number of families). ornamental and legume crops. industries worldwide, and chemical and It also has a high reproductive rate and Currently, Australia remains free biological control strategies. has developed resistance to several of this leafminer species but it is classes of broad-spectrum insecticides. Pest overview Ornamental crops, legumes and now well-established in nearby vegetables are affected by the pest. countries, including Indonesia. Adult L. trifolii can grow between 1-1.7 Host families include Apiaceae (celery), However, if the pest does millimetres. The thorax and abdomen are Asteraceae (chrysanthemum, gerbera, establish in Australia, it could grey/black with patchy yellow regions, lettuce), Brassicaceae (broccoli, threaten our horticulture industry. while the head is completely yellow. cauliflower), Cucurbitaceae (cucumber, AUSVEG Biosecurity Officer Females will use their ovipositor (a tubular melon, pumpkin), Fabaceae (beans, organ which can rasp through the leaf lentils), and Solanaceae (potato, tomato, Madeleine Quirk reports. -
Identification of Liriomyza Spp. (Diptera Agromyzidae) on Yardlong Bean and Cucumber in Songkhla Province-I. Feeding
Journal of Agricultural Technology 2010 Vol.6(2): 257-267 Journal of AgriculturalAvailable online Technology http://www.ijat 2010, Vol.6-rmutto.com(2): 257-267 ISSN 1686-9141 Identification of Liriomyza spp. (Diptera: Agromyzidae) on yardlong bean and cucumber in Songkhla province : I. Feeding tunnel patterns, external morphology and male distipallus morphology Sappanukhro, P., Petcharat, J.*, Nualsri, J. and Permkam, S. Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand. Sappanukhro, P., Petcharat, J., Nualsri, J. and Permkam, S. (2010). Identification of Liriomyza spp. (Diptera: Agromyzidae) on yardlong bean and cucumber in Songkhla province : I. Feeding tunnel patterns, external morphology and male distipallus morphology. Journal of Agricultural Technology 6(2): 257-267. Taxonomic study of agromyzid leafminer Liriomyza spp. (Diptera: Agromyzidae) damaging on leaves of yardlong bean, and cucumber in Songkhla Province was conducted. Six hundred and fifty one leafminer larvae in their feeding tunnels were collected and reared in laboratory. Total of 186 adult male and 209 adult female leafminers were emerged. Species identification using feeding tunnel patterns of leafminer larvae and external morphology; colour of the ground, where inner and outer vertical bristles were situated, proportion of the last to the penultimate section of vein M3+4 of front wing, colour and patch size on mesopleura and number and location of setae on mesopleura, of the adult flies had considerable variation which cause difficulty and uncertainty. Using male distipallus morphology could separate the leafminer into at least 2 species, L. sativae and L.trifolii, but distortion during preparation also caused variation difficut to determine in some samples. -
Liriomyza Leafminer Management on Desert Melons (Updated Apr 2018)
Liriomyza Leafminer Management on Desert Melons (updated Apr 2018) John C. Palumbo, Department of Entomology, Yuma Ag Center Vegetable Leafminer, Liriomyza sativae American Serpentine Leafminer, Liriomyza trifolii Distribution and Host Plants These native Liriomyza leafminer species are closely related, have a similar biology and because they have a similar appearance, are often misidentified. L. sativa is the more commonly found on vegetables and melons during the summer and fall, whereas L. trifolii is more abundant during the spring and early summer. These two species attack a wide range of plants and have been reported on over 50 host crops including carrot, celery, cucumber, broccoli, cabbage, lettuce, melon, onion, pepper, potato, squash, and tomatoes. They can also be found in varying intensity during the summer on cotton, alfalfa, and safflower. Ornamental flower crops such as chrysanthemum, gerbera, gypsophila, and marigold are readily attacked as well as a number of broad-leaved weed species such as nightshade, sunflowers and groundcherry. Description and Seasonal Development Leafminers have a relatively short life cycle. The optimal temperature for development is about 85-90 °F and development ceases below 50 °F. The entire life cycle can be completed in less than 3 weeks under ideal conditions. Several generations may be produced during each growing season in Arizona. The eggs are very small and laid into the leaf just beneath the upper surface. After 2 to 4 days, larvae hatch and begin feeding on plant mesophyll tissue just below the upper surface of the leaf (Plate 1A). Black hook-like mouthparts are apparent in all instars, and can be used to differentiate the larvae.