Mimicking the Martian Hydrological Cycle: a Set-Up to Introduce Liquid Water in Vacuum

Total Page:16

File Type:pdf, Size:1020Kb

Mimicking the Martian Hydrological Cycle: a Set-Up to Introduce Liquid Water in Vacuum sensors Article Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum Jesús Manuel Sobrado Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850 Madrid, Spain; [email protected] Received: 24 September 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: Liquid water is well known as the life ingredient as a solvent. However, so far, it has only been found in liquid state on this planetary surface. The aim of this experiment and technological development was to test if a moss sample is capable of surviving in Martian conditions. We built a system that simulates the environmental conditions of the red planet including its hydrological cycle. This laboratory facility enables us to control the water cycle in its three phases through temperature, relative humidity, hydration, and pressure with a system that injects water droplets into a vacuum chamber. We successfully simulated the daytime and nighttime of Mars by recreating water condensation and created a layer of superficial ice that protects the sample against external radiation and minimizes the loss of humidity due to evaporation to maintain a moss sample in survival conditions in this extreme environment. We performed the simulations with the design and development of different tools that recreate Martian weather in the MARTE simulation chamber. Keywords: mars simulation; artificial atmosphere; water cycle; moss survival 1. Introduction There are similitudes and differences between Mars, the red planet, and Earth. One of the requirements for Earth-like life to emerge from a planet habitability perspective is the hydrological cycle. Pressure, temperature, and gas composition allow, for example, extreme microorganisms to live on Earth in different environments [1–4] where these variables are far from the average values. Water is a prerequisite for life [5]. This constitutes the main astrobiology paradigm [6–8]. Water in the gaseous state is found mostly in the universe in the interstellar medium [9]. Water as ice abounds in the interior of some moons, such as Europe [10]; at the poles of rocky planets, such as Earth and Mars [11]; and in interplanetary objects, such as comets and asteroids [12]. In liquid state, water is located on the surface of the Earth and interior of satellites of the giant planets [13]. In principle, liquid water and vacuum are incompatible. Only under special conditions, liquid water can be introduced in a vacuum system. The water vapor pressure indicates that under certain conditions of pressure and temperature [14], it is possible for water to remain in liquid state (Figure1). Sensors 2020, 20, 6150; doi:10.3390/s20216150 www.mdpi.com/journal/sensors Sensors 2020, 20, 6150 2 of 21 Sensors 2020, 20, x FOR PEER REVIEW 2 of 21 Figure 1. Water phase diagram [[14].14]. Comparison of parameters between Mars and Earth. Fortunately, MarsMars has has water, water, as iceas atice the at poles, the poles, as vapor as invapor the atmosphere in the atmosphere with a low with percentage a low in comparison with the main gases (95% CO , 2.7% N ; 1.6% Ar; 0.13% H 0; 0.08% CO) [15], and percentage in comparison with the main gases2 (95% CO2 2, 2.7% N2; 1.6% Ar;2 0.13% H20; 0.08% CO) as[15], liquid and as in liquid subglacial in subglacial layers [ 16layers,17]. [16,17]. Mars hasMars seasons, has seasons, diurnal diurnal and nocturnaland nocturnal variations variations of the of mainthe main environmental environmental variables variables [18] (temperature, [18] (tempera pressure,ture, pressure, radiation, radiation, composition composition of the atmosphere of the andatmosphere humidity), and which humidity), result which in changes result in in the changes state ofin waterthe state in aof short water amount in a short of time amount [19]. of Under time these[19]. Under conditions, these conditions, ice–liquid andice–liquid ice–mineral and ice–mine interfacesral interfaces [20] are the [20] appropriate are the appropriate means for means extreme for microorganismsextreme microorganisms to adapt into thisadapt hostile in this environment hostile envi [ronment21]. Some [21]. of theSome most of the relevant most aspectsrelevant from aspects the pointfrom the of view point of of liquid view of water liquid on water the surface on the of surfac Marse areof Mars found are in found the hydrological in the hydrological cycle [22 cycle] and [22] the dailyand the humidity daily humidity cycle that cycle might that influence might influence hydration hydration on Mars [on23]. Mars The hydrological[23]. The hydrological cycle is related cycle tois therelated seasons, to the the seasons, ice of thethe polarice of caps, the polar and thecaps, gas and flow the in gas the flow atmosphere in the atmosphere [24]. [24]. The existence of waterwater isis essentialessential forfor lifelife toto emerge.emerge. In planetary sciences, there have been developments of simulation systems that include water in habitabilityhabitability and geochemicalgeochemical studies of vacuum samples [[25–28].25–28]. The last calibration of the Ph Phoenixoenix lander in relation to the relative relative humidity sensor [[29,30]29,30] provides the meansmeans under very specialspecial circumstancescircumstances to enableenable thethe existenceexistence ofof liquidliquid water on thethe MartianMartian surfacesurface [[31].31]. According to this last calibration at the location of the PhoenixPhoenix lander (near(near the the North North Pole), Pole), relative relative humidity humidity values values surpassing surpassing 35% have 35% been have recorded. been recorded. In summer, In a water vapor peak (relative humidity) appears due to the minimum CO ice coverage of the water ice summer, a water vapor peak (relative humidity) appears due to the minimum2 CO2 ice coverage of formedthe water in ice the formed bottom in main the partbottom of the main northern part of polar the northern cap. Water polar vapor cap. is Water transported vapor tois transported the equator fromto the the equator polar capsfrom ofthe Mars polar [32 caps,33]. of This Mars increase [32,33]. in Th wateris increase vapor, althoughin water itvapor, is a very although small amountit is a very by volumesmall amount of water by due volume to the of density water ofdue the to atmosphere the density with of the an atmosphere average pressure with ofan ~(6–8) average mbar pressure [34], can of condense~(6–8) mbar on [34], the cooler can condense surfaces on at dawnthe cooler and occasionallysurfaces at dawn at lower and latitudes, occasionally especially at lower at nightlatitudes, [35], similar to what happens with dew on Earth. The average temperature in the air is 218 K ( 55 C), with especially at night [35], similar to what happens with dew on Earth. The average temperature− ◦ in the a maximum of 276.3 K (3.15 C) in the equator, up to 170 K (below 100 C) in the polar cap [36]. Mars air is 218 K (−55 °C), with a maximum◦ of 276.3 K (3.15 °C) in the equator,− ◦ up to 170 K (below −100 °C) hasin the a di polarfference capof [36]. up toMars 30 ◦hasC between a difference the ground of up andto 30 the °C surface between atmosphere the ground [37 and]. On the the surface other hand,atmosphere the increase [37]. inOn diurnal the other temperature, hand, the the increase incidence in ofdiurnal solar radiationtemperature, on the the surface, incidence as well of assolar the fluctuationradiation on and the increase surface, in as pressure well as the due fluctuation to the sublimation and increase of carbon in pressure dioxide due ice, to can the allow sublimation that liquid of watercarbon to dioxide appear asice, ice can near allow the polesthat liquid in short water seasonal to appear periods. as ice near the poles in short seasonal periods.The regions near the poles of the red planet contain large amounts of water ice, both inside [16] and outside,The regions giving near rise the to poles the existenceof the red ofplanet salts contai that producen large amounts a brine [ 38of– water40] of ice, clathrates both inside [41] and[16] perchloratesand outside, [giving42,43]. rise On Mars,to the waterexistence iceand of salts carbon that dioxide produce are a subjectbrine [38–40] to climatic of clathrates and seasonal [41] and dailyperchlorates variations [42,43]. [44]. On We Mars, know water that an ice ice and sheet carbon protects dioxide against are subject life-damaging to climatic ultraviolet and seasonal radiation and anddaily is variations a good thermal [44]. We insulator know that [45,46 an]. ice The sheet main protects example against on our life-damaging planet is found ultraviolet in Antarctica radiation [47], whereand is microa good algae thermal composed insulator mainly [45,46]. of cyanobacteria The main example are capable on our of planet photo synthesizingis found in Antarctica [48,49]. In [47], this setting,where micro one of algae the places composed where mainly water existenceof cyanobacteri is possiblea are in capable several statesof photo as wellsynthesizing as the emergence [48,49]. In of lifethis issetting, in locations one of favored the places by the where hydration water of theexistenc atmosphere.e is possible in several states as well as the emergenceThe goal of oflife this is in paper locations is to presentfavored anby experimentalthe hydration set-up of the andatmosphere. method capable of recreating the appropriateThe goal environmental of this paper conditionsis to present to an favor experime the metabolicntal set-up activity and method of simple capable Earth-based of recreating organisms the appropriate environmental conditions to favor the metabolic activity of simple Earth-based organisms on the Martian surface [50]. We designed an observation in the laboratory similar to the Sensors 2020, 20, 6150 3 of 21 on the Martian surface [50].
Recommended publications
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture
    Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas 05/11/10 Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas With laboratory partner: Christopher Richards University College London 5th November 2010 Abstract: The ratio of specific heats, γ, at constant pressure, Cp and constant volume, Cv, have been determined by measuring the oscillation frequency when a ball bearing undergoes simple harmonic motion due to the gravitational and pressure forces acting upon it. The γ value is an important gas property as it relates the microscopic properties of the molecules on a macroscopic scale. In this experiment values of γ were determined for input gases: CO2, Ar, N2, and an Ar + N2 mixture in the ratio 0.51:0.49. These were found to be: 1.1652 ± 0.0003, 1.4353 ± 0.0003, 1.2377 ± 0.0001and 1.3587 ± 0.0002 respectively. The small uncertainties in γ suggest a precise procedure while the discrepancy between experimental and accepted values indicates inaccuracy. Systematic errors are suggested; however it was noted that an average discrepancy of 0.18 between accepted and experimental values occurred. If this difference is accounted for, it can be seen that we measure lower vibrational contributions to γ at room temperature than those predicted by the equipartition principle. It can be therefore deduced that the classical idea of all modes contributing to γ is incorrect and there is actually a „freezing out‟ of vibrational modes at lower temperatures. I. Introduction II. Method The primary objective of this experiment was to determine the ratio of specific heats, γ, for gaseous Ar, N2, CO2 and an Ar + N2 mixture.
    [Show full text]
  • Composition and Accretion of the Terrestrial Planets
    Lunar and Planetary Science XXXI 1546.pdf COMPOSITION AND ACCRETION OF THE TERRESTRIAL PLANETS. Edward R. D. Scott and G. Jeffrey Taylor, Hawai’i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, Univer- sity of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA; [email protected] Abstract: Compositional variations among the spread gravitational mixing of the embryos and their four terrestrial planets are generally attributed to giant 20 impacts [1] rather than to primordial chemical varia- Fig. 2 tions among planetesimals [e.g., 2]. This is largely be- Mars cause modeling suggests that each terrestrial planet ac- 15 creted material from the whole of the inner solar sys- tem [1], and because Mercury’s high density is attrib- 10 Venus Earth uted to mantle stripping in a giant impact [3] and not to its position as the innermost planet [4]. However, Mer- Mercury cury’s high concentration of metallic iron and low con- 5 centration of oxidized iron are comparable to those in recently discovered metal-rich chondrites [5-7]. Since E 0 chondrites are linked isotopically with the Earth, we 0 0.5 1 1.5 2 suggest that Mercury may have formed from metal-rich chondritic material. Venus and Earth have similar con- Semi-major Axis (AU) centrations of metallic and oxidized iron that are inter- fragments, which ensured that each terrestrial planet mediate between those of Mercury and Mars consistent formed from material originally located throughout the with wide, overlapping accretion zones [1]. However, inner solar system (0.5 to 2.5 AU).
    [Show full text]
  • POSSIBLE STRUCTURE MODELS for the TRANSITING SUPER-EARTHS:KEPLER-10B and 11B
    43rd Lunar and Planetary Science Conference (2012) 1290.pdf POSSIBLE STRUCTURE MODELS FOR THE TRANSITING SUPER-EARTHS:KEPLER-10b AND 11b. P. Futó1 1 Department of Physical Geography, University of West Hungary, Szombathely, Károlyi Gáspár tér, H- 9700, Hungary ([email protected]) Introduction:Up to january of 2012,10 super- The planet Kepler-11b has a large radius (1.97 R⊕) for Earths have been announced by Kepler-mission [1] its mass (4.3 M⊕),therefore this planet must have a that is designed to detect hundreds of transiting exo- spherical shell that is composed of low-density materi- planets.Kepler was launched on 6th March,2009 and the als.Considering the planet's average density,it must primary purpose of its scientific program is to search have a metallic core with different possible fractional for terrestrial-sized planets in the habitable zone of mass.Accordinghly,I have made a possible structure Solar-like stars.For the case of high number of discov- model for Kepler-11b in which the selected core mass eries we will be able to estimate the frequency of fraction is 32.59% (similarly to that of Earth) and the Earth-sized planets in our galaxy.Results of the Kepler- water ice layer has a relatively great fractional 's measurements show that the small-sized planets are volume.For case of the selected composition, the icy frequent in the spiral galaxies.A catalog of planetary surface sublimated to form a water vapor as the planet candidates,including objects with small-sized candidate moved inward the central star during its migration.
    [Show full text]
  • Planetary Science
    Scientific Research National Aeronautics and Space Administration Planetary Science MSFC planetary scientists are active in Peering into the history The centerpiece of the Marshall efforts is research at Marshall, building on a long history of the solar system the Marshall Noble Gas Research Laboratory of scientific support to NASA’s human explo- (MNGRL), a unique facility within NASA. Noble- ration program planning, whether focused Marshall planetary scientists use multiple anal- gas isotopes are a well-established technique on the Moon, asteroids, or Mars. Research ysis techniques to understand the formation, for providing detailed temperature-time histories areas of expertise include planetary sample modification, and age of planetary materials of rocks and meteorites. The MNGRL lab uses analysis, planetary interior modeling, and to learn about their parent planets. Sample Ar-Ar and I-Xe radioactive dating to find the planetary atmosphere observations. Scientists analysis of this type is well-aligned with the formation age of rocks and meteorites, and at Marshall are involved in several ongoing priorities for scientific research and analysis Ar/Kr/Ne cosmic-ray exposure ages to under- planetary science missions, including the Mars in NASA’s Planetary Science Division. Multiple stand when the meteorites were launched from Exploration Rovers, the Cassini mission to future missions are poised to provide new their parent planets. Saturn, and the Gravity Recovery and Interior sample-analysis opportunities. Laboratory (GRAIL) mission to the Moon. Marshall is the center for program manage- ment for the Agency’s Discovery and New Frontiers programs, providing programmatic oversight into a variety of missions to various planetary science destinations throughout the solar system, from MESSENGER’s investiga- tions of Mercury to New Frontiers’ forthcoming examination of the Pluto system.
    [Show full text]
  • On the Use of Planetary Science Data for Studying Extrasolar Planets a Science Frontier White Paper Submitted to the Astronomy & Astrophysics 2020 Decadal Survey
    On the Use of Planetary Science Data for Studying Extrasolar Planets A science frontier white paper submitted to the Astronomy & Astrophysics 2020 Decadal Survey Thematic Area: Planetary Systems Principal Author Daniel J. Crichton Jet Propulsion Laboratory, California Institute of Technology [email protected] 818-354-9155 Co-Authors: J. Steve Hughes, Gael Roudier, Robert West, Jeffrey Jewell, Geoffrey Bryden, Mark Swain, T. Joseph W. Lazio (Jet Propulsion Laboratory, California Institute of Technology) There is an opportunity to advance both solar system and extrasolar planetary studies that does not require the construction of new telescopes or new missions but better use and access to inter-disciplinary data sets. This approach leverages significant investment from NASA and international space agencies in exploring this solar system and using those discoveries as “ground truth” for the study of extrasolar planets. This white paper illustrates the potential, using phase curves and atmospheric modeling as specific examples. A key advance required to realize this potential is to enable seamless discovery and access within and between planetary science and astronomical data sets. Further, seamless data discovery and access also expands the availability of science, allowing researchers and students at a variety of institutions, equipped only with Internet access and a decent computer to conduct cutting-edge research. © 2019 California Institute of Technology. Government sponsorship acknowledged. Pre-decisional - For planning
    [Show full text]
  • PDF— Granite-Greenstone Belts Separated by Porcupine-Destor
    C G E S NT N A ER S e B EC w o TIO ok N Vol. 8, No. 10 October 1998 es st t or INSIDE Rel e • 1999 Section Meetings ea GSA TODAY Rocky Mountain, p. 25 ses North-Central, p. 27 A Publication of the Geological Society of America • Honorary Fellows, p. 8 Lithoprobe Leads to New Perspectives on 70˚ -140˚ 70˚ Continental Evolution -40˚ Ron M. Clowes, Lithoprobe, University -120˚ of British Columbia, 6339 Stores Road, -60˚ -100˚ -80˚ Vancouver, BC V6T 1Z4, Canada, 60˚ Wopmay 60˚ [email protected] Slave SNORCLE Fred A. Cook, Department of Geology & Thelon Rae Geophysics, University of Calgary, Calgary, Nain Province AB T2N 1N4, Canada 50˚ ECSOOT John N. Ludden, Centre de Recherches Hearne Pétrographiques et Géochimiques, Taltson Vandoeuvre-les-Nancy, Cedex, France AB Trans-Hudson Orogen SC THOT LE WS Superior Province ABSTRACT Cordillera AG Lithoprobe, Canada’s national earth KSZ o MRS 40 40 science research project, was established o Grenville Province in 1984 to develop a comprehensive Wyoming Penokean GL -60˚ understanding of the evolution of the -120˚ Yavapai Province Orogen Appalachians northern North American continent. With rocks representing 4 b.y. of Earth -100˚ -80˚ history, the Canadian landmass and off- Phanerozoic Proterozoic Archean shore margins provide an exceptional 200 Ma - present 1100 Ma 3200 - 2650 Ma opportunity to gain new perspectives on continental evolution. Lithoprobe’s 470 - 275 Ma 1300 - 1000 Ma 3400 - 2600 Ma 10 study areas span the country and 1800 - 1600 Ma 3800 - 2800 Ma geological time. A pan-Lithoprobe syn- 1900 - 1800 Ma 4000 - 2500 Ma thesis will bring the project to a formal conclusion in 2003.
    [Show full text]
  • Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen-Nitrogen Flames by Iron Pentacarbonylt
    Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen-Nitrogen Flames by Iron Pentacarbonylt MARC D. RUMMINGER+ AND GREGORY T. LINTERIS* Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA This paper presents measurements of the burning velocity of premixed CO-HrOrNz flames with and without the inhibitor Fe(CO)s over a range of initial Hz and Oz mole fractions. A numerical model is used to simulate the flame inhibition using a gas-phase chemical mechanism. For the uninhibited flames, predictions of burning velocity are excellent and for the inhibited flames, the qualitative agreement is good. The agreement depends strongly on the rate of the CO + OH <-> COz + H reaction and the rates of several key iron reactions in catalytic H- and O-atom scavenging cycles. Most of the chemical inhibition occurs through a catalytic cycle that converts o atoms into Oz molecules. This O-atom cycle is not important in methane flames. The H-atom cycle that causes most of the radical scavenging in the methane flames is also active in CO-Hz flames, but is of secondary importance. To vary the role of the H- and O-atom radical pools, the experiments and calculations are performed over a range of oxygen and hydrogen mole fraction. The degree of inhibition is shown to be related to the fraction of the net H- and O-atom destruction through the iron species catalytic cycles. The O-atom cycle saturates at a relatively low inhibitor mole fraction (-100 ppm), whereas the H-atom cycle saturates at a much higher inhibitor mole fraction (-400 ppm).
    [Show full text]
  • Lifetimes of Interstellar Dust from Cosmic Ray Exposure Ages of Presolar Silicon Carbide
    Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide Philipp R. Hecka,b,c,1, Jennika Greera,b,c, Levke Kööpa,b,c, Reto Trappitschd, Frank Gyngarde,f, Henner Busemanng, Colin Madeng, Janaína N. Ávilah, Andrew M. Davisa,b,c,i, and Rainer Wielerg aRobert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of Natural History, Chicago, IL 60605; bChicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637; cDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637; dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550; ePhysics Department, Washington University, St. Louis, MO 63130; fCenter for NanoImaging, Harvard Medical School, Cambridge, MA 02139; gInstitute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland; hResearch School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; and iEnrico Fermi Institute, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved December 17, 2019 (received for review March 15, 2019) We determined interstellar cosmic ray exposure ages of 40 large ago. These grains are identified as presolar by their large isotopic presolar silicon carbide grains extracted from the Murchison CM2 anomalies that exclude an origin in the Solar System (13, 14). meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± Presolar stardust grains are the oldest known solid samples 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga available for study in the laboratory, represent the small fraction ago.
    [Show full text]
  • Download This Article in PDF Format
    A&A 539, A28 (2012) Astronomy DOI: 10.1051/0004-6361/201118309 & c ESO 2012 Astrophysics Improved precision on the radius of the nearby super-Earth 55 Cnc e M. Gillon1, B.-O. Demory2, B. Benneke2, D. Valencia2,D.Deming3, S. Seager2, Ch. Lovis4, M. Mayor4,F.Pepe4,D.Queloz4, D. Ségransan4,andS.Udry4 1 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bˆat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA 3 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 4 Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland Received 21 October 2011 / Accepted 28 December 2011 ABSTRACT We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 μm. An individual analysis . +0.15 of these new data leads to a planet radius of 2 21−0.16 R⊕, which agrees well with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the planet at 4.5 μmto2.20 ± 0.12 R⊕. We also performed an independent analysis of the MOST data, paying particular attention to the influence of the systematic effects of instrumental origin on the derived parameters and errors by including them in a global model instead of performing a preliminary detrending-filtering processing.
    [Show full text]
  • Nitrogen Oxide Concentrations in Natural Waters on Early Earth
    The First Billion Years: Habitability 2019 (LPI Contrib. No. 2134) 1042.pdf NITROGEN OXIDE CONCENTRATIONS IN NATURAL WATERS ON EARLY EARTH. Sukrit Ran- jan1,*, Zoe R. Todd2, Paul B. Rimmer3,4, Dimitar D. Sasselov2 and Andrew R. Babbin1, 1MIT, 77 Massachusetts Avenue, CamBridge, MA 02139; [email protected], 2Harvard University, 60 Garden Street, Cambridge, MA 02138, 3MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK, 4University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, *SCOL Postdoctoral Fellow. Introduction: A key challenge in origin-of-life the fact that UV photolysis would not have occurred studies is determining the environmental conditions below the photic depths of these molecules. on early Earth under which abiogenesis occurred [1]. Results: We find that the sinks due to Fe2+ and While some constraints do exist (e.g. zircon evidence UV are orders of magnitude stronger than the sink due for surface liquid water), relatively few constraints to vents. Inclusion of the effects of these sinks sup- - exist on the abundances of trace chemical species, presses [NOX ]<1 µM in the bulk ocean over the vast which are relevant to assessing the plausibility and majority of the plausible parameter space. Oceanic - guiding the development of postulated prebiotic NOX -dependent prebiotic chemistries must identify - chemical pathways which depend on these molecules. mechanisms to concentrate local [NOX ] above the - - - - Nitrogen oxide anions (NOX ; NO2 , NO3 ) are oceanic mean. However, [NOX ] could have reached - chemical species of special importance. NOX are in- prebiotically-relevant concentrations (³1 µM) in fa- voked in diverse prebiotic chemistries, from the origin vorable surficial aqueous environments, i.e.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]