Freshwater Records.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Records.Indd STATE-RECORD FRESHWATER FISH (Information Courtesy of Florida Fish and Wildlife Conservation Commission) Largemouth Bass 17.27 lbs. Billy M. O’Berry July 6,1986 Unnamed lake, Polk County Redeye Bass 7.83 lbs. William T. Johnson Feb. 18, 1989 Apalachicola River, Gadsden Co. Spotted Bass 3.75 lbs. Dow Gilmore June 24, 1985 Apalachicola River, Gulf Co. Suwannee Bass 3.89 lbs. Ronnie Everett March 2,1985 Suwannee River, Gilchrist Co. Striped Bass 42.25 lbs. Alphonso Barnes Dec. 14,1993 Apalachicola River, Gadsden Co. Peacock Bass 9.08 lbs. Jerry Gomez Mar. 11,1993 Kendall Lakes, Dade County Oscar 2.34 lbs. Jimmy Cook Mar. 16,1994 Lake Okeechobee, Palm Beach Skipjack Herring Open (Qualifying weight is 2.5 lbs.) White Bass 4.69 lbs. Richard S. Davis April 9,1982 Apalachicola River, Gadsden Co. Sunshine Bass 16.31 lbs. Thomas R. Elder May 9,1985 Lake Seminole, Jackson County Black Crappie 3.83 lbs. Ben F. Curry, Sr. Jan. 21, 1992 Lake Talquin, Gadsden County Flier 1.24 lbs. William C. Lane, Jr. Aug. 14, 1992 Lake Iamonia, Leon County Bluegill 2.95 lbs. John R. LeMaster Apr. 19,1989 Crystal Lake Washington County Redbreast Sunfish 2.08 lbs. Jerrell DeWees, Jr. April 29, 1988 Suwannee River, Gilchrist County Redear Sunfish 4.86 lbs. Joseph M. Floyd Mar. 13, 1986 Merritts Mill Pond, Jackson Co. Spotted Sunfish .83 lbs. Coy Dotson May 12,1984 Suwannee River, Columbia Co. Warmouth 2.44 lbs. Tony Dempsey Oct. 19, 1985 Yellow Riv. (Guess Lk.) Okaloosa Chain Pickerel 6.96 lbs. Jep Dove June 11, 2004 Lake Talquin, Gadsden County Redfin Pickerel 1.06 lbs. Mike Wilkerson June 6, 1993 New River, Bradford County Common Carp Open (Qualifying weight is 35 pounds) Channel Catfish 44.50 lbs. Joe Purvis May 19,1985 Lake Bluff, Lake County Flathead Catfish 49.39 lbs. Tommy Fowler April 10, 2004 Apalachicola River, Gulf County White Catfish 18.88 lbs. Jim Miller Sept. 21, 1991 Withlacoochee River, Marion Co. Blue Catfish 64.50 lbs. James Mitchell Aug. 4, 2008 Choctawhatchee River, Wash. Co. Brown Bullhead 5.72 lbs. Robert Bengis Mar. 28,1995 Cedar Creek, Duval County Yellow Bullhead 2.75 lbs. Jon Davis May 17, 2003 Little Withlacoochee Riv. Sumter Black Bullhead Open (Qualifying weight is 2 pounds) Bowfin 19.00 lbs. Jim Brown Nov. 5,1984 Lake Kissimmee, Osceola Co. American Shad 5.19 lbs. Bud Dankert Feb. 15, 1990 St. Johns River, Seminole County American Shad 5.19 lbs. Albert M. Judy Mar. 18, 1992 St. Johns River, Volusia County Longnose Gar 41.00 lbs. Evan D. Merritt April 14, 1985 Lake Panasoffkee, Sumter Co. Alligator Gar 123.00 lbs. Zachary Phillips July 8,1995 Choctawhatchee River, Walton Florida Gar 9.44 lbs.. Patric A. Daniel Mar. 25, 2001 Lake Lawne, Orange Co Blue Talapia Open (Qualifying weight is 10 pounds) UNCERTIFIED RECORDS (believed to be reliable, based on witnesses or other acceptable evidence) Largemouth Bass 20.13 lbs. Frederick J. Friebel May, 1923 Big Fish Lake (private), Pasco Co. Chain Pickerel 8.00 lbs. Jimmy James July 5,1971 Lake Talquin, Gadsden County Common Carp 40.56 lbs. Bernard L. Rowan May 24,1981 Apalachicola River, Gadsden Co. Flathead Catfish 57.50 lbs. Tom Norman Dec. 9, 1975 Hillsborough River, Hillsborough.
Recommended publications
  • Map of the Approximate Inland Extent of Saltwater at the Base of the Biscayne Aquifer in Miami-Dade County, Florida, 2018: U.S
    U.S. Department of the Interior Scientific Investigations Map 3438 Prepared in cooperation with U.S. Geological Survey Sheet 1 of 1 Miami-Dade County Pamphlet accompanies map 80°40’ 80°35’ 80°30’ 80°25’ 80°20’ 80°15’ 80°10’ 80°05’ 0 5 10 KILOMETERS 1 G-3949S / 26 G-3949I / 144 0 5 10 MILES BROWARD COUNTY G-3949D / 225 MIAMI-DADE COUNTY EXPLANATION 2 G-3705 / 5,570 Well fields DMW6 / 42.7 IMW6 / 35 Approximate boundary of the Model Land Area DMW7 / 32 Approximate inland extent of saltwater in 2018—Isochlor represents a chloride IMW7 / 16.3 G-3948S / 151 concentration of 1,000 milligrams per liter at the base of the aquifer 3 G-3948D / 4,690 25°55’ G-3978 / 69 Dashed where data are insufficient Approximation 4 G-3601S / 330 G-3601I / 464 Approximate inland extent of saltwater in 2011 (Prinos and others, 2014)—Isochlor G-3601D (formerly G-3601) / 1,630 represents a chloride concentration of 1,000 milligrams per liter at the base of G-894 / 16 the aquifer Winson 1 / 31 F-279 / 4,700 Approximation Gratigny Well / 2,690 Dashed where data are insufficient Miami Canal G-297 (121 & 4th) / 19 5 3 ! Proposed locations for new wells and number (see table 4) G-3224 / 36 G-3705 / 5,570 ! Monitoring well name and chloride concentration, in milligrams per liter FLORIDA G-3602 / 5,250 G-3947 / 23 25°50’ F-45 / 175 Lake Okeechobee G-3250 / 187 6 G-548 / 32 G-3603 / 182 G-1354 / 920 Study area 7 G-571 / 27 G-3964 / 1,970 Florida Bay G-354 / 36 G-3704 / 8,730 G-1351 / 379 Miami International Airport 9 G-3604 / 6,860 G-3605 / 4,220 8 G-3977S / 17 G-3977D
    [Show full text]
  • Blue-Green Algal Bloom Weekly Update Reporting March 26 - April 1, 2021
    BLUE-GREEN ALGAL BLOOM WEEKLY UPDATE REPORTING MARCH 26 - APRIL 1, 2021 SUMMARY There were 12 reported site visits in the past seven days (3/26 – 4/1), with 12 samples collected. Algal bloom conditions were observed by the samplers at seven of the sites. The satellite imagery for Lake Okeechobee and the Caloosahatchee and St. Lucie estuaries from 3/30 showed low bloom potential on visible portions of Lake Okeechobee or either estuary. The best available satellite imagery for the St. Johns River from 3/26 showed no bloom potential on Lake George or visible portions of the St. Johns River; however, satellite imagery from 3/26 was heavily obscured by cloud cover. Please keep in mind that bloom potential is subject to change due to rapidly changing environmental conditions or satellite inconsistencies (i.e., wind, rain, temperature or stage). On 3/29, South Florida Water Management District staff collected a sample from the C43 Canal – S77 (Upstream). The sample was dominated by Microcystis aeruginosa and had a trace level [0.42 parts per billion (ppb)] of microcystins detected. On 3/29, Florida Department of Environmental Protection (DEP) staff collected a sample from Lake Okeechobee – S308 (Lakeside) and at the C44 Canal – S80. The Lake Okeechobee – S308 (Lakeside) sample was dominated by Microcystis aeruginosa and had a trace level (0.79 ppb) of microcystins detected. The C44 Canal – S80 sample had no dominant algal taxon and had a trace level (0.34 ppb) of microcystins detected. On 3/29, Highlands County staff collected a sample from Huckleberry Lake – Canal Entrance.
    [Show full text]
  • Upper Ochlockonee River Paddling Guide
    F ll o r ii d a D e s ii g n a tt e d ¯ P a d d ll ii n g T r a ii ll s U p p e r O c h ll o c k o n e e R ii v e r G E O R G I A U p p e rr O c h ll o c k o n e e R ii v e rr P a d d ll ii n g T rr a ii ll M a p 1 159 «¬12 )" Hinson )"157 343 Lake Iamonia )" «¬267 Havana «¬12 344 Quincy )" ¤£319 342 GADSDEN U p p e rr O c h ll o c k o n e e R ii v e rr «¬ P a d d ll ii n g T rr a ii ll M a p 2 Bradfordville 90 ¤£ 27 ¤£ Lake Jackson Midway «¬263 ¨¦§10 1)"541 Capitola TALLAHASSEE Lake Talquin «¬20 «¬267 ¤£27 LEON ¤£319 Bloxham )"259 «¬267 Woodville Helen Designated Paddling Trail )"61 Wetlands ¤£319 Water WAKULLA Designated Paddling Trail Index 0 2.5 5 10 Miles 319 ¤£ 61 Newport Arran )" U p p e rr O c h ll o c k o n e e R ii v e rr P a d d ll ii n g T rr a ii ll M a p 1 ¯ Bell Rd d R d or n c Co o ir a C !| River Ridge «¬12 Plantation Concord Conservation Easement Access Point 1: SR 12 N: 30.6689 W: -84.3051 Havana Hiamonee à Plantation Conservation «¬12 Easement River Ridge Plantation C Conservation o n c Easement o d r R d n a R i id d r e M Kemp Rd N E D Tall Timbers Research Station S D & Land Conservancy A N O G E L Lake Iamonia I ro n B r id g e R d d Pond R ard ch Or !| Mallard Pond Access Point 2: Old Bainbridge Rd Bridge N: 30.5858 W: -84.3594 O l d B Carr Lake a i n b r i d Upper Ochlockonee River Paddling Trail g e R Canoe/Kayak Launch d !| Conservation Lands 27 0 0.5 1 2 Miles ¤£ Wetlands ¯ U p p e rr O c h ll o c k o n e e R ii v e rr P a d d ll ii n g T rr a ii ll M a p 2 )"270 RCM Farms Conservation Easement O l d B a i
    [Show full text]
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • Collier Miami-Dade Palm Beach Hendry Broward Glades St
    Florida Fish and Wildlife Conservation Commission F L O R ID A 'S T U R N P IK E er iv R ee m Lakewood Park m !( si is O K L D INDRIO ROAD INDRIO RD D H I N COUNTY BCHS Y X I L A I E O W L H H O W G Y R I D H UCIE BLVD ST L / S FT PRCE ILT SRA N [h G Fort Pierce Inlet E 4 F N [h I 8 F AVE "Q" [h [h A K A V R PELICAN YACHT CLUB D E . FORT PIERCE CITY MARINA [h NGE AVE . OKEECHOBEE RA D O KISSIMMEE RIVER PUA NE 224 ST / CR 68 D R !( A D Fort Pierce E RD. OS O H PIC R V R T I L A N N A M T E W S H N T A E 3 O 9 K C A R-6 A 8 O / 1 N K 0 N C 6 W C W R 6 - HICKORY HAMMOCK WMA - K O R S 1 R L S 6 R N A E 0 E Lake T B P U Y H D A K D R is R /NW 160TH E si 68 ST. O m R H C A me MIDWAY RD. e D Ri Jernigans Pond Palm Lake FMA ver HUTCHINSON ISL . O VE S A t C . T I IA EASY S N E N L I u D A N.E. 120 ST G c I N R i A I e D South N U R V R S R iv I 9 I V 8 FLOR e V ESTA DR r E ST.
    [Show full text]
  • Chapter 8C: St. Lucie and Caloosahatchee River Watersheds Annual Report
    2019 South Florida Environmental Report – Volume I Chapter 8C Chapter 8C: St. Lucie and Caloosahatchee River Watersheds Annual Report Cassondra Armstrong, Fawen Zheng, Anna Wachnicka, Amanda Khan, Zhiqiang Chen, and Lucia Baldwin SUMMARY A description of the estuaries and the river watersheds is followed by a summary of the conditions of the hydrology (rainfall and flow), water quality (salinity, phosphorus, nitrogen, and chlorophyll a [Chla]), and aquatic habitat (oysters and submerged aquatic vegetation [SAV]) based on results of the Research and Water Quality Monitoring Programs (RWQMPs). Following the summary for each estuary, significant findings during the Water Year 2018 (WY2018; May 1, 2017–April 30, 2018) reporting period are highlighted. In addition, the St. Lucie and Caloosahatchee river watersheds’ water quality monitoring results for total phosphorus (TP) and total nitrogen (TN) by basin are presented in Appendix 8C-1 of this volume as supplemental information. ST. LUCIE ESTUARY WY2018 total annual rainfall across the Tier 1 Contributing Areas (Lake Okeechobee, St. Lucie Basin, and Tidal Basin) to the St. Lucie Estuary (SLE) was more than the long-term average from WY1997 through WY2018. Although 74% of the annual rainfall usually occurs in the wet season, this value increased to 80% in WY2018. The relatively high amount of wet season rain was the driver for increased discharge to the SLE. The total annual freshwater inflow to the SLE in WY2018 (1.6 million acre-feet [ac-ft]) was higher than the long-term average of 1.0 million ac-ft. The inflow and percent contribution from Lake Okeechobee in WY2018 (0.6 million ac-ft and 37%, respectively) were greater than the long-term averages (0.3 million ac-ft and 26%, respectively).
    [Show full text]
  • An Historical Perspective on the Kissimmee River Restoration Project
    ing of 14 km of river channel, and removal of two water­ An Historical control structures and associated levees. Restoration of the Kissimmee River ecosystem will result in the reestablish­ ment of 104 km2 of river-floodplain ecosystem, including Perspective on the 70 km of river channel and 11,000 ha of wetland habitat, which is expected to benefit over 320 species of fish and Kissimmee River wildlife. Restoration Project Background he Kissimmee River basin is located in central Florida Tbetween the city of Orlando and lake Okeechobee Joseph W. Koebel, Jr.1 within the Coastal Lowlands physiographic province. It con­ sists of a 4229-km2 upper basin, which includes Lake Kis­ Abstract simmee and 18 smaller lakes ranging in size from a few hec­ tares to 144 km2, and a 1,963-km2 lower basin, which This paper reviews the events leading to the channeliza­ includes the tributary watersheds (excluding Lake Istok­ tion of the Kissimmee River, the physical, hydrologic, and poga) of the Kissimmee River between lake Kissimmee and biological effects of channelization, and the restoration lake Okeechobee. The physiography of the region includes movement. Between 1962 and 1971, in order to provide the Osceola and Okeechobee Plains and the Lake Wales flood control for central and southern florida, the 166 ridge of the Wicomico shore (U.S. Army Corps of Engineers km-Iong meandering Kissimmee River was transformed 1992). into a 90 km-Iong, 10 meter-deep, 100 meter-wide canal. Prior to channelization, the Kissimmee River meandered Channelization and transformation of the Kissimmee River approximately 166 km within a 1.5-3-km-wide floodplain.
    [Show full text]
  • A Light in the Dark: Illuminating the Maritime Past of The
    A LIGHT IN THE DARK: ILLUMINATING THE MARITIME PAST OF THE BLACKWATER RIVER by Benjamin Charles Wells B.A., Mercyhurst University, 2010 A thesis submitted to the Department of Anthropology College of Arts, Social Sciences, and Humanities The University of West Florida For partial fulfillment of the requirements for the degree of Master of Arts 2015 © 2015 Benjamin Charles Wells The thesis of Benjamin Charles Wells is approved: ____________________________________________ _________________ Gregory D. Cook, Ph.D., Committee Member Date ____________________________________________ _________________ Brian R. Rucker, Ph.D., Committee Member Date ____________________________________________ _________________ Della A. Scott-Ireton, Ph.D., Committee Chair Date Accepted for the Department/Division: ____________________________________________ _________________ John R. Bratten, Ph.D., Chair Date Accepted for the University: ____________________________________________ _________________ John Clune, Ph.D., Interim AVP for Academic Programs Date ACKNOWLEDGMENTS This project would not have been possible without the help of numerous individuals. First and foremost, a massive thank you to my committee—Dr. Della Scott-Ireton, Dr. Greg Cook, and Dr. Brian Rucker. The University of West Florida Archaeology Institute supplied the materials and financial support to complete the field work. Steve McLin, Fritz Sharar, and Del de Los Santos maintained the boats and diving equipment for operations. Cindi Rogers, Juliette Moore, and Karen Mims – you three ladies saved me, and encouraged me more than you will ever know. To those in the Department of Anthropology who provided assistance and support, thank you. Field work would not have occurred without the graduate and undergraduate students in the 2013 and 2014 field schools and my fellow graduate students on random runs to the river.
    [Show full text]
  • Everglades Fall 2020
    State of the Everglades Fall 2020 Photo: Elizabeth MacSwan Pumped water filling the Brighton Valley project. Photo: SFWMD Wood Storks. Photo: Cheryl Black Brighton Valley Project Removes Nutrients When someone says the word and Improves Habitat “Everglades,” what do you imagine? Audubon helped celebrate the inauguration of the Brighton Valley A River of Grass? Bright pink Dispersed Water Management Project on September 17, 2020. This joint Roseate Spoonbills and giant flocks project between the South Florida Water Management District (SFWMD) of herons and egrets? Crocodiles? and Lykes Bothers, Inc. (Lykes) near the Kissimmee River will redirect excess water from the C-41A canal onto 8,143 acres of shallow reservoir We’re with you — we imagine on Lykes property (more than 12 square miles). those things too. But we also trace the true scope of the Everglades, Lykes will be paid to store and treat between 40,000-90,000 acre-feet of an ecosystem that extends from water annually1 in this shallow reservoir, removing an estimated three tons north of Lake Okeechobee all the of phosphorus and 27 tons of nitrogen pollution. The reservoir will be way to Florida Bay. Impacts on the operated during wet periods at the direction of the SFWMD. northern end of the Everglades flow downstream, and are felt as Brighton Valley marks the third major partnership project between Lykes far south as the Keys, and beyond. and the SFWMD, which includes the 15,858-acre Nicodemus Slough project and the experimental 2,500-acre West Water Hole project. At In this issue of the State of the an average storage depth of two feet, these types of water features are Everglades, we work north to south meccas for Florida bird life.
    [Show full text]
  • Florida Marine Research Institute
    ISSN 1092-194X FLORIDA MARINE RESEARCH INSTITUTE TECHNICALTECHNICAL REPORTSREPORTS Florida’s Shad and River Herrings (Alosa species): A Review of Population and Fishery Characteristics Richard S. McBride Florida Fish and Wildlife Conservation Commission FMRI Technical Report TR-5 2000 Jeb Bush Governor of Florida Florida Fish & Wildlife Conservation Commission Allan E. Egbert Executive Director The Florida Marine Research Institute (FMRI) is a division of the Florida Fish and Wildlife Con- servation Commission (FWC). The FWC is “managing fish and wildlife resources for their long- term well-being and the benefit of people.” The FMRI conducts applied research pertinent to managing marine-fishery resources and marine species of special concern in Florida. Programs at the FMRI focus on resource-management topics such as managing gamefish and shellfish populations, restoring depleted fish stocks and the habitats that support them, pro- tecting coral reefs, preventing and mitigating oil-spill damage, protecting endangered and threatened species, and managing coastal-resource information. The FMRI publishes three series: Memoirs of the Hourglass Cruises, Florida Marine Research Publi- cations, and FMRI Technical Reports. FMRI Technical Reports contain information relevant to imme- diate resource-management needs. Kenneth D. Haddad, Chief of Research James F. Quinn, Jr., Science Editor Institute Editors Theresa M. Bert, Paul R. Carlson, Mark M. Leiby, Anne B. Meylan, Robert G. Muller, Ruth O. Reese Judith G. Leiby, Copy Editor Llyn C. French, Publications Production Florida’s Shad and River Herrings (Alosa species): A Review of Population and Fishery Characteristics Richard S. McBride Florida Fish and Wildlife Conservation Commission Florida Marine Research Institute 100 Eighth Avenue Southeast St.
    [Show full text]
  • Florida Historical Uarterly
    The Florida Historical uarterly APRIL 1970 PUBLISHED BY THE FLORIDA HISTORICAL SOCIETY FRONT COVER “A View of Pensacola in West Florida” is a black and white engraving published and dedicated by George Gauld to Sir William Burnaby, rear admiral and commander of the British fleet at Jamaica. From the British ensigns on the vessels and the flag flying from the flagstaff, this is obviously a picture of Pensacola during the British period. Since Gauld’s name is not mentioned in any reference sources as an engraver, and since such a skill is not mentioned in his book, it is unlikely that he was the engraver of this picture, but he probably drew the sketch of the scene from which it was made. The engraving is in the Prints and Photographs Division, Library of Congress. Gauld, surveyor of the coasts of Florida, was born in 1732 at Ardbrack, Bamffshire, and he was educated at King’s College, Aberdeen. In 1763 he was appointed to make a survey of all newly acquired English territory in the West Indies, and in March of the following year he sailed aboard the Tartar for Jamaica to join Burnaby’s fleet. In August 1764 he accompanied Sir John Lindsay to Pensacola and he may have made a sketch of the harbor at that time. He was a friend of Philip Pittman, author of The Present State of the European Settlements on the Mississippi . (1770), and Thomas Hutchins whose An Historical Narrative and Topogaphical Description of Louisiana, and West-Florida was published in 1784. They helped him draft charts and plans of West Florida.
    [Show full text]
  • Chapter 1: the Everglades to the 1920S Introduction
    Chapter 1: The Everglades to the 1920s Introduction The Everglades is a vast wetland, 40 to 50 miles wide and 100 miles long. Prior to the twentieth century, the Everglades occupied most of the Florida peninsula south of Lake Okeechobee.1 Originally about 4,000 square miles in extent, the Everglades included extensive sawgrass marshes dotted with tree islands, wet prairies, sloughs, ponds, rivers, and creeks. Since the 1880s, the Everglades has been drained by canals, compartmentalized behind levees, and partially transformed by agricultural and urban development. Although water depths and flows have been dramatically altered and its spatial extent reduced, the Everglades today remains the only subtropical ecosystem in the United States and one of the most extensive wetland systems in the world. Everglades National Park embraces about one-fourth of the original Everglades plus some ecologically distinct adjacent areas. These adjacent areas include slightly elevated uplands, coastal mangrove forests, and bays, notably Florida Bay. Everglades National Park has been recognized as a World Heritage Site, an International Biosphere Re- serve, and a Wetland of International Importance. In this work, the term Everglades or Everglades Basin will be reserved for the wetland ecosystem (past and present) run- ning between the slightly higher ground to the east and west. The term South Florida will be used for the broader area running from the Kississimee River Valley to the toe of the peninsula.2 Early in the twentieth century, a magazine article noted of the Everglades that “the region is not exactly land, and it is not exactly water.”3 The presence of water covering the land to varying depths through all or a major portion of the year is the defining feature of the Everglades.
    [Show full text]