Trees in the Landscape, Part 4: Bombax Ceiba Donald R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silk, Linen, Leather, Denim, Grass, Cotton, Felt
Silk, linen, leather, denim, grass, cotton, felt. Natural materials keep the integrity of their shape yet hold an impression of the figure that has worn them. Fit-out for Olivia Spencer Bower speaks to the fabrics and forms that we live in. An assortment of garment patterns, building plans and the lifestyles of art heroines provide templates or underlying structures for Emma Fitts’ installation at the Ilam School of Fine Arts gallery. Adopting the layout of a modernist home and featuring a series of fabric hangings and clothing cutouts, Fitts’ work acutely relates to our situated knowledge, the proportions of the body and our experience of space, while also implying much less measurable qualities. Alternative histories that reveal the social relationships and values of a bygone era are incorporated to form a homage of sorts, though these references are evoked to shed light on the present–what it means to live and make work as an artist today. The gallery is physically divided by four large textile works, hung from the ceiling according to the walls shown in architectural plans for 15A Leinster Avenue, Christchurch–the former home of artist Olivia Spencer Bower (1905- 82). These soft walls enable visitors to occupy the space as though wandering through her actual house: living room, kitchen, sunroom, bedroom and studio. Designed in 1969 by architects Cowey and McGregor in the Christchurch style of neo-brutalism, the house was commissioned to accommodate the needs of a female artist living alone. There is an emphasis on form developed in relation to function and it is both refined and compact, manifesting these ideals. -
“Al-Tally” Ascension Journey from an Egyptian Folk Art to International Fashion Trend
مجمة العمارة والفنون العدد العاشر “Al-tally” ascension journey from an Egyptian folk art to international fashion trend Dr. Noha Fawzy Abdel Wahab Lecturer at fashion department -The Higher Institute of Applied Arts Introduction: Tally is a netting fabric embroidered with metal. The embroidery is done by threading wide needles with flat strips of metal about 1/8” wide. The metal may be nickel silver, copper or brass. The netting is made of cotton or linen. The fabric is also called tulle-bi-telli. The patterns formed by this metal embroidery include geometric figures as well as plants, birds, people and camels. Tally has been made in the Asyut region of Upper Egypt since the late 19th century, although the concept of metal embroidery dates to ancient Egypt, as well as other areas of the Middle East, Asia, India and Europe. A very sheer fabric is shown in Ancient Egyptian tomb paintings. The fabric was first imported to the U.S. for the 1893 Chicago. The geometric motifs were well suited to the Art Deco style of the time. Tally is generally black, white or ecru. It is found most often in the form of a shawl, but also seen in small squares, large pieces used as bed canopies and even traditional Egyptian dresses. Tally shawls were made into garments by purchasers, particularly during the 1920s. ملخص البحث: التمي ىو نوع من انواع االتطريز عمى اقمشة منسوجة ويتم ىذا النوع من التطريز عن طريق لضم ابر عريضة بخيوط معدنية مسطحة بسمك 1/8" تصنع ىذه الخيوط من النيكل او الفضة او النحاس.واﻻقمشة المستخدمة في صناعة التمي تكون مصنوعة اما من القطن او الكتان. -
Sea-Silk Based Nanofibers and Their Diameter Prediction THERMAL SCIENCE: Year 2019, Vol
Tian, D., et al.: Sea-Silk Based Nanofibers and Their Diameter Prediction THERMAL SCIENCE: Year 2019, Vol. 23, No. 4, pp. 2253-2256 2253 SEA-SILK BASED NANOFIBERS AND THEIR DIAMETER PREDICTION by * Dan TIAN, Chan-Juan ZHOU, and Ji-Huan HE National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China Original scientific paper https://doi.org/10.2298/TSCI1904253T Diameter of sea-silk based nanofibers prepared by electrospinning is closely re- lated to the concentrations of sea-silk solution. A mathematical model is estab- lished according the mass conservation law in fluid mechanics to predict the di- ameter of fibers, and the MATLAB software is used to fit the experiment value. The results show that the fitted equation is quite accurate and efficient for estimating the diameter of fibers with different concentrations. Key words: electrospinning, sea-silk, mathematical model, nanofiber, fiber’s diameter. Introduction Electrospinning is an effective way to prepare nanofibers, it is a fabrication process that uses an electric field to control the deposition of polymer fibers onto a receptor [1-8]. In electrospinning process, the diameter of nanofiber is determined by many factors, like volt- age, viscosity of solution, receptor’s distance, environment temperature, environment humidi- ty, etc. [9, 10]. Nanofiber’s diameter and morphology can also be controlled by additives [11]. The sea silk is one of the oldest natural silks, which has a history of more than 5000 years [12-16], and now we can produce artificial sea silk through Mytilus edulis. To this end, we extract protein from Mytilus edulis and then use it as an additive for electrospinning, this maybe has some effects on the morphology of fibers. -
Diversity and Utilization of Edible Plants and Macro-Fungi in Subtropical Guangdong Province, Southern China
Article Diversity and Utilization of Edible Plants and Macro-Fungi in Subtropical Guangdong Province, Southern China Juyang Liao 1,2, Linping Zhang 3, Yan Liu 2, Qiaoyun Li 2, Danxia Chen 2, Qiang Zhang 4 and Jianrong Li 5,* 1 College of Forestry, Beijing Forestry University, Beijing10083, China; [email protected] 2 Hunan Forest Botanical Garden, Changsha 410116, China; [email protected] (Y.L.); [email protected] (Q.L.); [email protected] (D.C.) 3 Key Laboratory of State Forestry Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed (JXAU), Nanchang 330045, China; [email protected] 4 Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China; [email protected] 5 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China * Correspondence: [email protected]; Tel.: +86-20-3725-2692 Received: 17 September 2018; Accepted: 22 October 2018; Published: 25 October 2018 Abstract: Food supply from forests is a fundamental component of forest ecosystem services, but information relating to suitability for human consumption and sustainable utilization of non-timber forest products (NTFPs) in developing countries is lacking. To address this gap in knowledge, diverse datasets of edible plants and macro-fungi were obtained from field collections, historical publications, and community surveys across seven cities in Guangdong Province (GP), southern China. Seven edible parts and five food categories of plant species were classified according to usage and specific nutrient components. Edible plant species were also categorized into different seasons and life forms. Our results show that at least 100 plant species (with 64 plant species producing fruit) and 20 macro-fungi were commonly used as edible forest products in subtropical GP. -
Flora of China 12: 300–301. 2007. 2. BOMBAX Linnaeus, Sp. Pl. 1
Flora of China 12: 300–301. 2007. 2. BOMBAX Linnaeus, Sp. Pl. 1: 511. 1753, nom. cons. 木棉属 mu mian shu Deciduous big trees; young trunk usually spiny. Leaf blade palmately compound; leaflets 5–9, sometimes petiolulate, with basal joint, margin entire. Flowers bisexual, solitary or fascicled, axillary or terminal. Flowers large, produced before leaf flush. Pedicel shorter than 10 cm. Bracteoles absent. Calyx tubular, campanulate, or cup-shaped, apex truncate to deeply lobed, sometimes with abaxial glands, leathery, falling with petals and stamens. Petals 5, usually red, sometimes yellow, orange, or white, obovate or obovate-lanceolate, asymmetrical, sometimes reflexed. Stamens 70–900, bases connate into short tube; filaments connate into 5–10 distinct phalanges, alternating with petals; anthers reniform. Ovary syncarpous, 5-locular; ovules many per locule; style filiform, longer than stamens; stigma stellately lobed. Capsule loculicidally dehiscent into 5 valves, valves woody or leathery, with silky wool inside. Seeds small, black, enclosed by wool. About 50 species: mostly in tropical America, also in tropical Africa, Asia, and Australasia; three species in China. 1a. Leaflets abaxially densely tomentose; petals white, ca. 4 cm ................................................................................ 3. B. cambodiense 1b. Leaflets abaxially glabrous or hairy only on veins; petals red or orange-red, 10–15 cm. 2a. Calyx 3.8–5 cm; petals adaxially glabrous; filaments linear; capsule 25–30 cm ..................................................... 1. B. insigne 2b. Calyx 2–3(–4.5) cm; petals adaxially stellate pilose; filaments thicker at base than apex; capsule 10–15 cm .......... 2. B. ceiba 1. Bombax insigne Wallich var. tenebrosum (Dunn) A. lobes 3–5, semi-orbicular, ca. -
Pachira Aquatica, (Zapotón, Pumpo)
How to Grow a Sacred Maya Flower Pachira aquatica, (Zapotón, Pumpo) Nicholas Hellmuth 1 Introduction: There are several thousand species of flowering plants in Guatemala. Actually there are several thousand flowering TREES in Guatemala. If you count all the bushes, shrubs, and vines, you add thousands more. Then count the grasses, water plants; that’s a lot of flowers to look at. Actually, if you count the orchids in Guatemala you would run out of numbers! Yet out of these “zillions” of beautiful tropical flowers, the Classic Maya, for thousands of years, picture less than 30 different species. It would be a challenge to find representations of a significant number of orchids in Maya art: strange, since they are beautiful, and there are orchids throughout the Maya homeland as well as in the Olmec homeland, plus orchids are common in the Izapa area of proto_Maya habitation in Chiapas. Yet other flowers are pictured in Maya yart, yet in the first 150 years of Maya studies, only one single solitary flower species was focused on: the sacred water lily flower! (I know this focus well, I wrote my PhD dissertation featuring this water lily). But already already 47 years ago, I had noticed flowers on Maya vases: there were several vases that I discovered myself in a royal burial at Tikal that pictured stylized 4-petaled flowers (Burial 196, the Tomb of the Jade Jaguar). Still, if you have XY-thousand flowers blooming around you, why did the Maya picture less than 30? In other words, why did the Maya select the water lily as their #1 flower? I know most of the reasons, but the point is, the Maya had XY-thousand. -
Silk Cotton Vs. Bombax Vs. Banyan
Ceiba pentandra Kopok tree, Silk-cotton tree Ta Prohm, Cambodia By Isabel Zucker Largest known specimen in Lal Bagh Gardens in Bangalore, India. http://scienceray.com/biology/botany/amazing-trees-from-around-the-world-the-seven-wonder-trees/ Ceiba pentandra Taxonomy • Family: Malvaceae • Sub family: Bombacaceae -Bombax spp. in same family - much online confusion as to which tree is primarily in Ta Praham, Cambodia. • Fig(Moraceae), banyan and kapok trees in Ta Praham • Often referred to as a banyan tree, which is quite confusing. Distribution • Originated in the American tropics, natural and human distribution. • Africa, Asia. – Especially Indonesia and Thailand • Indian ocean islands • Ornamental shade tree • Zone – Humid areas, rainforest, dry areas – Mean annual precipitation 60-224 inches per year – Temperatures ranging from 73-80 unaffected by frost – Elevation from 0-4,500 feet – Dry season ranging from 0-6 months Characteristics • Rapidly growing, deciduous • Reaches height up to 200 feet • Can grow 13 feet per year • Diameter up to 9 feet above buttress – Buttress can extend 10 feet from the trunk and be 10 feet tall • large umbrella-shaped canopies emerge above the forest canopy • http://www.flmnh.ufl.edu/caribarch/ceiba.htm • Home to many animals – Birds, frogs, insects – Flowers open in the evening, pollinated by bats • Epiphytes grow in branches • Compound leaves with 5-8 lance- shaped leaflets 3-8 inches long • Dense clusters of whitish to pink flowers December to February – 3-6 inch long, elliptical fruits. – Seeds of fruit surrounded by dense, cottony fibers. – Fibers almost pure cellulose, buoyant, impervious to water, low thermal conductivity, cannot be spun. -
Plant Press Vol. 15, No. 3
Special Symposium Issue continued on page 7 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 15 - No. 3 July-September 2012 Botany Profile Letting the Phylogeny Genie Out of the Bottle By David Erickson n April 20-21, the Department of marine diversity through a network of phylogenies, particularly as the volume Botany at the Smithsonian Insti- marine research stations. of data vastly expands in the genomic Otution convened the 10th Smith- Following Coddington’s whirlwind era. This is in contrast to methods that sonian Botanical Symposium, hosted by tour of the take a the Department of Botany in collabo- diversity of “total data” ration with the United States Botanic research at approach Garden. This year’s symposium titled the insti- and hope “Transforming 21st Century Compara- tution, the correct tive Biology using Evolutionary Trees,” Lawrence phylo- examined the development and applica- Dorr then genetic tion of phylogenetic methods in light of introduced signal is the massive advances in sequencing and the recipient of the 10th José Cuatrecasas contained within as a kind of average genomic technology. Warren Wagner, Medal for Excellence in Tropical Botany. among the data. Edwards’ presentation Chair of the Department of Botany, This year’s winner was Walter S. Judd, served as the perfect introduction to get opened the symposium by welcoming a Professor of Botany at the University the audience thinking about how we speakers and guests. He then provided of Florida at Gainesville. Judd is one of build phylogenies, and how thinking an introduction into the Department of the world’s experts in the Ericaceae, has carefully about data analysis remains a Botany and background on symposium a strong interest in the Melastomataceae, critical question as we may be tempted subjects in the past. -
Quercus ×Coutinhoi Samp. Discovered in Australia Charlie Buttigieg
XXX International Oaks The Journal of the International Oak Society …the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 1 International Oaks The Journal of the International Oak Society … the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 International Oak Society Officers and Board of Directors 2012-2015 Officers President Béatrice Chassé (France) Vice-President Charles Snyers d’Attenhoven (Belgium) Secretary Gert Fortgens (The Netherlands) Treasurer James E. Hitz (USA) Board of Directors Editorial Committee Membership Director Chairman Emily Griswold (USA) Béatrice Chassé Tour Director Members Shaun Haddock (France) Roderick Cameron International Oaks Allen Coombes Editor Béatrice Chassé Shaun Haddock Co-Editor Allen Coombes (Mexico) Eike Jablonski (Luxemburg) Oak News & Notes Ryan Russell Editor Ryan Russell (USA) Charles Snyers d’Attenhoven International Editor Roderick Cameron (Uruguay) Website Administrator Charles Snyers d’Attenhoven For contributions to International Oaks contact Béatrice Chassé [email protected] or [email protected] 0033553621353 Les Pouyouleix 24800 St.-Jory-de-Chalais France Author’s guidelines for submissions can be found at http://www.internationaloaksociety.org/content/author-guidelines-journal-ios © 2014 International Oak Society Text, figures, and photographs © of individual authors and photographers. Graphic design: Marie-Paule Thuaud / www.lecentrecreatifducoin.com Photos. Cover: Charles Snyers d’Attenhoven (Quercus macrocalyx Hickel & A. Camus); p. 6: Charles Snyers d’Attenhoven (Q. oxyodon Miq.); p. 7: Béatrice Chassé (Q. acerifolia (E.J. Palmer) Stoynoff & W. J. Hess); p. 9: Eike Jablonski (Q. ithaburensis subsp. -
Phylogeny and Biogeography of Ceiba Mill. (Malvaceae, Bombacoideae)
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.196238; this version posted July 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TITLE PAGE 2 3 Pezzini et al. Evolutionary History of Tropical Dry Forest 4 5 Research article: Phylogeny and biogeography of Ceiba Mill. (Malvaceae, Bombacoideae) 6 7 Flávia Fonseca Pezzini1,2,8, Kyle G. Dexter3, Jefferson G. de Carvalho-Sobrinho4, Catherine A. Kidner1,2, 8 James A. Nicholls5, Luciano P. de Queiroz6, R. Toby Pennington1,7 9 10 1 Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom 11 2 School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom 12 3 School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom. 13 4 Colegiado de Ciências Biológicas, Universidade Federal do Vale do São Francisco, Petrolina, Brazil 14 5 Australian National Insect Collection, CSIRO, Acton, Australia 15 6 Herbario, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil 16 7 Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom 17 8 Corresponding author: [email protected] | 20a Inverleith Row Edinburgh, EH3 5LR, UK 18 19 ABSTRACT 20 The Neotropics is the most species-rich area in the world and the mechanisms that generated and 21 maintain its biodiversity are still debated. This paper contributes to the debate by investigating 22 the evolutionary and biogeographic history of the genus Ceiba Mill. -
Kinetics and Thermodynamics of Dispersed Oil Sorption by Kapok Fiber
DOI: 10.1515/eces-2019-0053 ECOL CHEM ENG S. 2019;26(4):759-772 Check Shyong QUEK 1, Norzita NGADI 1* and Muhammad Abbas Ahmad ZAINI 1,2 KINETICS AND THERMODYNAMICS OF DISPERSED OIL SORPTION BY KAPOK FIBER KINETYKA I TERMODYNAMIKA SORPCJI ZDYSPERGOWANEGO OLEJU PRZEZ WŁÓKNO KAPOKA Abstract: This work was aimed at evaluating the sorption of dispersed oil by kapok fiber. The physicochemical characteristics of kapok fiber were investigated using BET, SEM, FTIR, XRD, contact angle and elemental analysis. The oil droplet size distribution at different temperatures was analysed using a Coulter counter, and its relationship with sorption was investigated. The effects of dosage, hydraulic retention time and temperature, on the sorption performance were studied. The result indicates that the sorption of dispersed oil by kapok fiber is spontaneous, endothermic and agreed with the pseudo-first-order reaction kinetics. The amount of oil that could be removed is about 28.5 %, while that of water is less than 1 % of the original amount (0.5 dm 3). Kapok is a promising natural hydrophobic fiber for dispersed oil removal from oily wastewater. Keywords: dispersed oil, hydrophobic, kapok fiber, kinetics of sorption, thermodynamics of sorption Introduction There has been an increasing concern over the presence of dispersed oil in oily wastewater [1]. Most of the earlier and related works are mainly concerned about the removal of floating oil from the surface of water, and to be more specific, in the remediation of marine oil spills caused by the accidental release of petroleum from tankers and drilling rigs. The usual steps are to employ boomers and skimmers, to contain and collect the oil, and then to apply dispersant on the remaining oil slick to break it up into small droplets that would dilute and travel to deeper parts of the ocean and away from the coastline [2]. -
El Jardín Botánico Arturo E. Ragonese (JBAER): Miradas a Través Del Tiempo, Realidad Y Prospectiva
El Jardín Botánico Arturo E. Ragonese (JBAER): miradas a través del tiempo, realidad y prospectiva 2016 712.253:58 Molina, Ana María M72 El Jardín Botánico Arturo E. Ragonese (JBAER) : miradas a través del tiempo, realidad y prospectiva / Ana María Molina. – Buenos Aires : Ediciones INTA. 2016 318 p. : il., fotos ISBN Nº 978-987-521-738-6 i- Título JARDINES BOTANICOS – COLECCIÓN DE PLANTAS – HISTORIA – CULTIVOS INTA - DD Los contenidos de este libro son investigaciones realizadas hasta el 2013 El Jardín Botánico Arturo E. Ragonese (JBAER): miradas a través del tiempo, realidad y prospectiva Ana María Molina Foto de tapa: Avenida de los Robles, Jardín Botánico Arturo E. Ragonese (JBAER). Autor: Gabriel Colonna. Instituto de Recursos Biológicos (IRB) Centro de Investigación de Recursos Naturales (CIRN) Centro Nacional de Investigaciones Agropecuarias (CNIA) Instituto Nacional de Tecnología Agropecuaria (INTA) De Los Reseros y Nicolás Repetto (ex De Las Cabañas) s.n. (1686) Hurlingham, Buenos Aires, Argentina Teléfono: (5411) 4621-1309 www.inta.gob.ar/botanicoragonese, [email protected] A la memoria de mis padres quienes despertaron mi amor por la naturaleza, a mis hermanos con quienes compartí y disfruté la libertad del campo. Un gran reconocimiento a mi esposo, hijos, nietos y amigos, que supieron de mis alegrías, logros y también de mis tristezas. Bienvenidos Altísimo, omnipotente, buen Señor, tuyas son las alabanzas, la gloria y el honor y toda bendición. A ti solo, Altísimo, corresponden, y ningún hombre es digno de hacer de ti mención. Loado seas, mi Señor, con todas tus criaturas, especialmente el señor hermano sol, el cual es día, y por el cual nos alumbras.