Microbiomarkers in Inflammatory Bowel Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Microbiomarkers in Inflammatory Bowel Diseases Leading article our disease understanding. In contrast Microbiomarkers in inflammatory bowel to the static human genome, micro- biome composition is more dynamic and Gut: first published as 10.1136/gutjnl-2016-313678 on 21 July 2017. Downloaded from diseases: caveats come with caviar can thus be more easily modified by, for example, probiotics, prebiotics, antibi- Felix Sommer,1 Malte Christoph Rühlemann,1 otics or faecal microbiota transfer (FMT) 1 1 1 2 from healthy donors to patients by enema Corinna Bang, Marc Höppner, Ateequr Rehman, Christoph Kaleta, or via the nasoduodenal route. The latter 3 4 5 Phillippe Schmitt-Kopplin, Astrid Dempfle, Stephan Weidinger, was demonstrated to be perhaps the best 1 2,6 7 method to treat life-threatening recurrent Eva Ellinghaus, Susanne Krauss-Etschmann, Dirk Schmidt-Arras, 6–8 1 8 1 1,8 Clostridium difficile infections, but is Konrad Aden, Dominik Schulte, David Ellinghaus, Stefan Schreiber, a controversial method for IBD and is Andreas Tholey,2 Jan Rupp,9 Matthias Laudes,8 John F Baines,2,10 therefore still regarded as an experimental Philip Rosenstiel,1 Andre Franke1 therapy. Nevertheless, a recent multi- centre placebo-controlled trial in Australia (the Faecal Microbiota Transplantation in The largest numbers of commensal gut, but also between luminal and mucosa- Ulcerative Colitis (FOCUS) study) demon- bacteria reside within our intestinal tract, attached communities of the same intes- strated efficacy of FMT for treating UC with an increasing density from mouth to tinal segment, and even along the crypt- (p=0.021; enemas given at 5 days a week anus. Recently, a new estimate for the total villus axis in the epithelium. Thus, for overall 8 weeks).9 Based on this finding, number of bacteria (3.8×1013) in the host–microbiota interactions are likely it was suggested that future work should 70 kg ‘reference man’ was reported.1 For regionally specific and the local crosstalk focus on defining the optimum treatment human cells, the same authors revised past determines intestinal function and physi- intensity and the role of donor–recipient estimates to 3.0×1013 cells, out of which ology. Probably each human individual matching based on microbial profiles. The approximately 90% belong to the haema- carries its own ‘microbial fingerprint’ growing body of studies using FMT and topoietic lineage. Hence, the widely cited (especially when considering genomic gnotobiotics started to move the field of 10:1 ratio of bacteria versus human cells variation within the bacterial species’ microbiota research away from correla- received an update, showing that the populations), which is why forensic scien- tion to causality by proving a functional number of bacteria in the body is actually tists started to exploit the use of this involvement of the microbiota for health of the same order as the number of human non-human organ.3 and disease.10–12 cells, and that the cumulative bacterial Recent large-scale analyses of popula- Microbiome studies in IBD have been mass is about 200 g. Still, this large number tion-based cohorts with >1000 samples consistent in finding reduced diver- of bacteria highlights their importance in validated that body mass index, age sity in patients compared with healthy maintaining health and metabolism. at sampling and gender are important controls (HC).13 14 A lack of microbial Different parts of the intestinal tract have covariates that need to be included in diversity seems to be a general theme in http://gut.bmj.com/ different functions, tissue structure varies microbiome association analyses.4 In several diseases (obesity, diabetes, asthma, accordingly and gradients exist for several sum, Falony et al identified 18 covari- atopic dermatitis, and so on), suggesting physicochemical parameters such as nutri- ates, including stool consistency, dietary that a species-rich ecosystem is more ents, pH or oxygen levels.2 Consequently, factors and blood traits, cumulatively robust against environmental influences, microbiota composition varies along the explaining 7.7% of the total variation in as functionally related microbes exist in the gut microbiota, leaving 92.3% of the an intact ecosystem that can compen- on October 2, 2021 by guest. Protected copyright. 1Institute of Clinical Molecular Biology, Christian- interindividual microbial variation unex- sate for the function of another species Albrechts-Universität zu Kiel, Kiel, Germany plained. In a recent host-microbiome that has disappeared. Consequently, 2Institute for Experimental Medicine, Christian Albrechts genome-wide association study, 42 diversity seems to be a good indicator University of Kiel, Kiel, Germany 15 3 genetic loci were identified that explain of a ‘healthy gut.’ A large study that Helmholtz Zentrum München, Research Unit Analytical 5 analysed the microbiota in 447 treat- BioGeoChemistry, Deutsches Forschungszentrum für another 10% of microbiome variability. Gesundheit und Umwelt (GmbH), Neuherberg, Germany Although these percentages need to be ment-naïve patients with new-onset CD 4Institute of Medical Informatics and Statistics, confirmed in other cohorts and for other (treatment effects on the microbiota can University Hospital Schleswig-Holstein, Kiel, Germany likely be excluded in this unique cohort) 5 ethnicities, both studies show that (A) a Department of Dermatology, University Hospital large portion of microbiome variability also identified different bacteria, which Schleswig-Holstein, Kiel, Germany 6Research Center Borstel, Leibniz-Center for Medicine remains to be explained and (B) any were more abundant in patients compared 16 and Biosciences, Airway Research Center North (ARCN), microbiome study needs to account for with controls and vice versa. Gevers German Center for Lung Research (DZL), Borstel, covariates to prevent false-positive and et al also developed a microbial dysbiosis Germany 7 false-negative results. This means for the index that was correlated with the paedi- Institute of Biochemistry, Christian-Albrechts- atric CD activity index. The dysbiotic Universität zu Kiel, Kiel, Germany field that the meta-data for a particular 8Clinic of Internal Medicine I, University Hospital sample is at least as important for the signal in their study was stronger in the Schleswig-Holstein, Kiel, Germany data analysis as the actual microbiome mucosa-attached microbial communities 9 Department of Infectious Diseases and Microbiology, data itself. compared with faecal bacteria, suggesting University of Lubeck, Lubeck, Germany The main subtypes of IBD are Crohn’s that disease-relevant and more adherent 10Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plon, Germany disease (CD) and UC, affecting together bacteria are probably ‘diluted’ in the more than 2.5 million European indi- stool. The recently published longitudinal Correspondence to Mr Andre Franke, Institute IBD microbiome study of Halfvarson and of Clinical Molecular Biology, Christian-Albrechts- viduals. More than 200 genetic suscepti- University of Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, bility loci have been identified for IBD, a colleagues revealed that the microbiome Germany; a. franke@ mucosa. de contribution that significantly improved of patients with IBD varies more over time 1734 Sommer F, et al. Gut October 2017 Vol 66 No 10 Leading article dietary variance in microbiota-related data and to explore dietary modulation of the metabolic properties of the gut ecosystem Gut: first published as 10.1136/gutjnl-2016-313678 on 21 July 2017. Downloaded from (eg, enrichment of dietary fibre) as a possible therapeutic approach for IBD. Figure 1 provides a schematic overview on known gut microbiome changes in IBD. In the highlighted study, Pascal and colleagues29 report on an analysis of the faecal microbiome for a large IBD panel from four different countries (40 HC (unrelated HCs)/71 HR (healthy rela- tives from patients)/34 CD/74 UC from Spain, 54 CD from Belgium, 977 healthy twins from the UK and 158 patients with anorexia from Germany). In sum, they included about 1246 non-IBD and 162 IBD samples. The hypervariable region V4 of the 16S rRNA gene was targeted for microbiome profiling. Pascal et al replicate the findings of Gevers et al16 that F. prausnitzii is reduced/absent in patients with CD and that patients have Figure 1 Microbial signatures of a healthy gut and IBD. Under healthy homeostasis the a higher abundance of Escherichia and microbiota is diverse. Goblet cells produce a thick colonic mucus layer, which creates a physical Fusobacterium. barrier against the microbiota, but also harbours a specific mucus-resident microbiota enriched in, The key finding of their study is a for example, short-chain fatty acid producing bacteria Roseburia and Faecalibacterium prausnitzii. ‘microbial signature’ that may be used to Immune sensory cells such as DC and MΦ sample microbial patterns and induce a T cell profile discriminate between CD and non-CD dominated by IL-10 producing Treg lymphocytes leading to homeostasis. However, the composition by eight prokaryotic groups: Faecali- of the microbiota is less diverse in patients with IBD with fewer Bacteroidetes mainly attributed bacterium (genus from family Clostrid- to loss of Prevotella species and expansion of Actinobacteria, Proteobacteria such as adherent iaceae), Peptostreptococcaceae (family invasive Escherichia coli and Fusobacteria. Mucosal function is also altered, for example, lipid from order Clostridiales), Anaerostipes metabolism, illustrating a cometabolism
Recommended publications
  • Methanobrevibacter Cuticularis Sp
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 1996, p. 3620–3631 Vol. 62, No. 10 0099-2240/96/$04.0010 Copyright q 1996, American Society for Microbiology Physiological Ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., Isolated from the Hindgut of the Termite Reticulitermes flavipes JARED R. LEADBETTER AND JOHN A. BREZNAK* Department of Microbiology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1101 Received 11 January 1996/Accepted 15 July 1996 Two morphologically distinct, H2- and CO2-utilizing methanogens were isolated from gut homogenates of the subterranean termite, Reticulitermes flavipes (Kollar) (Rhinotermitidae). Strain RFM-1 was a short straight rod (0.4 by 1.2 mm), whereas strain RFM-2 was a slightly curved rod (0.34 by 1.6 mm) that possessed polar fibers. Their morphology, gram-positive staining reaction, resistance to cell lysis by chemical agents, and narrow range of utilizable substrates were typical of species belonging to the family Methanobacteriaceae. Analysis of the nearly complete sequences of the small-subunit rRNA-encoding genes confirmed this affiliation and supported their recognition as new species of Methanobrevibacter: M. cuticularis (RFM-1) and M. curvatus (RFM-2). The per cell rates of methanogenesis by strains RFM-1 and RFM-2 in vitro, taken together with their in situ population densities (ca. 106 cells z gut21; equivalent to 109 cells z ml of gut fluid21), could fully account for the rate of methane emission by the live termites. UV epifluorescence and electron microscopy confirmed that RFM-1- and RFM-2-type cells were the dominant methanogens in R.
    [Show full text]
  • Description of Methanobrevibacter Gottschalkii Sp. Nov
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 819–822 DOI: 10.1099/ijs.0.02022-0 Description of Methanobrevibacter gottschalkii NOTE sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Wadsworth Center, New Terry L. Miller and Chuzhao Lin York State Department of Health, Albany, NY 12201-0509, USA Author for correspondence: Terry L. Miller. Tel: j1 518 474 0015. Fax: j1 518 474 8590. e-mail: terry.miller!wadsworth.org Formal nomenclature is proposed for five methanogens, isolated from horse, pig, cow, goose and sheep faeces, that represent four novel species of the genus Methanobrevibacter. The four species, Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov., are distinguished from each other by a lack of genomic DNA reassociation and from previously described members of the genus on the basis of differences in the sequences of the 16S rRNA genes. Keywords: Methanobrevibacter, faecal methanogens Six of the seven species of Methanobrevibacter were (Conway de Macario et al., 1987; Ko$ nig, 1986; Miller isolated from gastrointestinal ecosystems (Miller, et al., 1986). 2001). Methanobrevibacter ruminantium, the type spe- The coccobacilli isolated from animals are distingui- cies, was isolated from the bovine rumen. Methano- shed from M. arboriphilicus, M. cuticularis, M. curva- brevibacter smithii is the predominant CO -reducing # tus and M. filiformis on the basis of differences in methanogen isolated from the human colon (Miller et morphology and physiology (Table 1). However, the al., 1986; Lin & Miller, 1998). The type strain of M. coccobacilli species of the genus Methanobrevibacter smithii was originally isolated from a municipal sewage and the animal isolates are not easily distinguishable digestor and was probably present in human faeces on the basis of biochemical and physiological charac- entering the treatment facility.
    [Show full text]
  • Histone Variants in Archaea and the Evolution of Combinatorial Chromatin Complexity
    Histone variants in archaea and the evolution of combinatorial chromatin complexity Kathryn M. Stevensa,b, Jacob B. Swadlinga,b, Antoine Hochera,b, Corinna Bangc,d, Simonetta Gribaldoe, Ruth A. Schmitzc, and Tobias Warneckea,b,1 aMolecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom; bInstitute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom; cInstitute for General Microbiology, University of Kiel, 24118 Kiel, Germany; dInstitute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; and eDepartment of Microbiology, Unit “Evolutionary Biology of the Microbial Cell,” Institut Pasteur, 75015 Paris, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 28, 2020 (received for review April 14, 2020) Nucleosomes in eukaryotes act as platforms for the dynamic inte- additional histone dimers can be taggedontothistetramertoyield gration of epigenetic information. Posttranslational modifications oligomers of increasing length that wrap correspondingly more DNA are reversibly added or removed and core histones exchanged for (3, 6–9). Almost all archaeal histones lack tails and PTMs have yet to paralogous variants, in concert with changing demands on tran- be reported. Many archaea do, however, encode multiple histone scription and genome accessibility. Histones are also common in paralogs (8, 10) that can flexibly homo- and heterodimerize in
    [Show full text]
  • Susceptibility of Archaea to Antimicrobial Agents: Applications to Clinical Microbiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2012.03913.x Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology S. Khelaifia and M. Drancourt Unite´ de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Me´diterrane´e Infection, Faculte´ de Me´decine, Aix-marseille-Universite´, Marseille, France Abstract We herein review the state of knowledge regarding the in vitro and in vivo susceptibility of archaea to antimicrobial agents, including some new molecules. Indeed, some archaea colonizing the human microbiota have been implicated in diseases such as periodontopathy. Archaea are characterized by their broad-spectrum resistance to antimicrobial agents. In particular, their cell wall lacks peptidoglycan, making them resistant to antimicrobial agents interfering with peptidoglycan biosynthesis. Archaea are, however, susceptible to the pro- tein synthesis inhibitor fusidic acid and imidazole derivatives. Also, squalamine, an antimicrobial agent acting on the cell wall, proved effective against human methanogenic archaea. In vitro susceptibility data could be used to design protocols for the decontamination of complex microbiota and the selective isolation of archaea in anaerobic culture. Keywords: Antimicrobial agent, archaea, methanogenic archaea, microbiota, susceptibility testing Article published online: 23 May 2012 Clin Microbiol Infect 2012; 18: 841–848 Corresponding author: M. Drancourt, Unite´ des Rickettsies, Fa- culte´ de Me´decine, 27, Boulevard Jean Moulin-Cedex 5, France E-mail: [email protected] Methanogenic archaea (herein referred to as methano- Introduction gens) are the sole organisms producing methane from H2 +CO2 [6].
    [Show full text]
  • Evaluation of Methanobrevibacter Smithii As a Human-Specific Marker
    The University of Southern Mississippi The Aquila Digital Community Presentations Microbial Source Tracking 2005 Evaluation of Methanobrevibacter smithii as a Human-Specific aM rker of Fecal Pollution Jennifer A. Ufnar University of Southern Mississippi Shiao Y. Wang University of Southern Mississippi R.D. Ellender University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/mst_presentations Recommended Citation Ufnar, Jennifer A.; Wang, Shiao Y.; and Ellender, R.D., "Evaluation of Methanobrevibacter smithii as a Human-Specific aM rker of Fecal Pollution" (2005). Presentations. 5. https://aquila.usm.edu/mst_presentations/5 This Poster is brought to you for free and open access by the Microbial Source Tracking at The Aquila Digital Community. It has been accepted for inclusion in Presentations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Evaluation of Methanobrevibacter smithii as a Human-Specific Q-311 For More Information Contact: Marker of Fecal Pollution Dr. R.D. Ellender University of Southern Mississippi Department of Biological Sciences Jennifer A. Ufnar, Shiao Y. Wang, and R.D. Ellender 118 College Drive #5018 Hattiesburg, MS 39406-0001 University of Southern Mississippi, Hattiesburg, MS 601-266-4720 or 601-266-4752(lab) Results Abstract Primers specific for the Methanobrevibacter genus (MET) amplified a product of 282bp. The Mnif primers amplified a 222bp product. The MET primers were Microbial source tracking has historically focused on the origin of traditional enteric indicators including coliforms, enterococci, or Escherichia coli. Recently, positive for all Methanobrevibacter species, and did not amplify a product in any other bacterial or methanogen genus.
    [Show full text]
  • Microbial Ecology of Full-Scale Wastewater Treatment Systems in the Polar Arctic Circle: Archaea, Bacteria and Fungi
    www.nature.com/scientificreports OPEN Microbial ecology of full-scale wastewater treatment systems in the Polar Arctic Circle: Archaea, Received: 28 November 2017 Accepted: 21 January 2018 Bacteria and Fungi Published: xx xx xxxx Alejandro Gonzalez-Martinez1, Maija Sihvonen1, Barbara Muñoz-Palazon2, Alejandro Rodriguez-Sanchez2, Anna Mikola1 & Riku Vahala1 Seven full-scale biological wastewater treatment systems located in the Polar Arctic Circle region in Finland were investigated to determine their Archaea, Bacteria and Fungi community structure, and their relationship with the operational conditions of the bioreactors by the means of quantitative PCR, massive parallel sequencing and multivariate redundancy analysis. The results showed dominance of Archaea and Bacteria members in the bioreactors. The activated sludge systems showed strong selection of Bacteria but not for Archaea and Fungi, as suggested by diversity analyses. Core OTUs in infuent and bioreactors were classifed as Methanobrevibacter, Methanosarcina, Terrestrial Group Thaumarchaeota and unclassifed Euryarchaeota member for Archaea; Trichococcus, Leptotrichiaceae and Comamonadaceae family, and Methylorosula for Bacteria and Trichosporonaceae family for Fungi. All infuents shared core OTUs in all domains, but in bioreactors this did not occur for Bacteria. Oligotype structure of core OTUs showed several ubiquitous Fungi oligotypes as dominant in sewage and bioreactors. Multivariate redundancy analyses showed that the majority of core OTUs were related to organic matter and nutrients removal. Also, there was evidence of competition among Archaea and Fungi core OTUs, while all Bacteria OTUs were positively correlated among them. The results obtained highlighted interesting features of extremely cold temperature bioreactors. Undoubtedly, microbial ecology of bioprocesses is a factor of major importance for the functioning of biopro- cesses, especially wastewater treatment (WWT) systems1.
    [Show full text]
  • Archaea: Essential Inhabitants of the Human Digestive Microbiota Vanessa Demonfort Nkamga, Bernard Henrissat, Michel Drancourt
    Archaea: Essential inhabitants of the human digestive microbiota Vanessa Demonfort Nkamga, Bernard Henrissat, Michel Drancourt To cite this version: Vanessa Demonfort Nkamga, Bernard Henrissat, Michel Drancourt. Archaea: Essential inhabi- tants of the human digestive microbiota. Human Microbiome Journal, Elsevier, 2017, 3, pp.1-8. 10.1016/j.humic.2016.11.005. hal-01803296 HAL Id: hal-01803296 https://hal.archives-ouvertes.fr/hal-01803296 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Human Microbiome Journal 3 (2017) 1–8 Contents lists available at ScienceDirect Human Microbiome Journal journal homepage: www.elsevier.com/locate/humic Archaea: Essential inhabitants of the human digestive microbiota ⇑ Vanessa Demonfort Nkamga a, Bernard Henrissat b, Michel Drancourt a, a Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France b Aix-Marseille-Université, AFMB UMR 7257, Laboratoire «architecture et fonction des macromolécules biologiques», Marseille, France article info abstract Article history: Prokaryotes forming the
    [Show full text]
  • Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases
    Clinical Reviews in Allergy & Immunology (2019) 57:456–466 https://doi.org/10.1007/s12016-019-08766-5 Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases Youssouf Sereme1,2 & Soraya Mezouar1,2 & Ghiles Grine1,2 & Jean Louis Mege1,2,3 & Michel Drancourt1,2 & Pierre Corbeau4,5,6 & Joana Vitte1,2,3 Published online: 14 September 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines.
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]
  • Euryarchaeota in Humans?
    Hindawi Publishing Corporation Archaea Volume 2010, Article ID 967271, 8 pages doi:10.1155/2010/967271 Review Article The Discussion Goes on: What Is the Role of Euryarchaeota in Humans? H.-P.HorzandG.Conrads Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, and Department of Medical Microbiology, RWTH Aachen University Hospital, 52057 Aachen, Germany Correspondence should be addressed to H.-P. Horz, [email protected] Received 12 August 2010; Accepted 11 November 2010 Academic Editor: Reinhard Hensel Copyright © 2010 H.-P. Horz and G. Conrads. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The human body (primarily the intestinal tract, the oral cavity, and the skin) harbours approximately 1,000 different bacterial species. However, the number of archaeal species known to colonize man seems to be confined to a handful of organisms within the class Euryarchaeota (including Methanobrevibacter smithii, M. oralis,andMethanosphaera stadtmanae). In contrast to this conspicuously low diversity of Archaea in humans their unique physiology in conjunction with the growing number of reports regarding their occurrence at sites of infection has made this issue an emerging field of study. While previous review articles in recent years have addressed the putative role of particularly methanogenic archaea for human health and disease, this paper compiles novel experimental data that have been reported since then. The aim of this paper is to inspire the scientific community of “Archaea experts” for those unique archaeal organisms that have successfully participated in the human-microbe coevolution.
    [Show full text]
  • Intestinal Microbiota in Human Health and Disease: the Impact of Probiotics
    Genes Nutr (2011) 6:209–240 DOI 10.1007/s12263-011-0229-7 REVIEW Intestinal microbiota in human health and disease: the impact of probiotics Jacoline Gerritsen • Hauke Smidt • Ger T. Rijkers • Willem M. de Vos Received: 4 February 2011 / Accepted: 20 April 2011 / Published online: 27 May 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract The complex communities of microorganisms Keywords Diversity Á Dysbiosis Á Host-microbe that colonise the human gastrointestinal tract play an interactions Á Intestinal microbiota Á Probiotics important role in human health. The development of cul- ture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal Introduction microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the It is known for over three decades that the human body application of high-throughput functional microbiomic contains tenfold more microbial cells (1014) than human approaches to determine the contribution of the intestinal cells (Savage 1977). These microorganisms colonise microbiota to human health. Moreover, we review the practically every surface of the human body that is exposed association between dysbiosis of the microbiota and both to the external environment, including the skin, oral cavity, intestinal and extra-intestinal diseases. Finally, we discuss respiratory, urogenital and gastrointestinal tract. Of these the potential of probiotic microorganism to modulate the body sites, the gastrointestinal (GI) tract is by far the most intestinal microbiota and thereby contribute to health and densely colonised organ. The complex community of well-being.
    [Show full text]
  • Methanobrevibacter Sp. Abm4 S
    Standards in Genomic Sciences (2013) 8:215-227 DOI:10.4056/sigs.3977691 The Complete genome sequence of Methanobrevibacter sp. AbM4 S. C. Leahy1,2, W. J. Kelly2, D. Li2, Y. Li1,2, E. Altermann2, S. C. Lambie2, F. Cox2 and G. T. Attwood1,2 1New Zealand Agricultural Greenhouse Gas Research Centre 2Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, New Zealand. Corresponding author: [email protected] Keywords: Methanogen, methane, ruminant, Methanobrevibacter Methanobrevibacter sp. AbM4 was originally isolated from the abomasal contents of a sheep and was chosen as a representative of the Methanobrevibacter wolinii clade for genome se- quencing. The AbM4 genome is smaller than that of the rumen methanogen M. ruminantium M1 (2.0 Mb versus 2.93 Mb), encodes fewer open reading frames (ORFs) (1,671 versus 2,217) and has a lower G+C percentage (29% versus 33%). Overall, the composition of the AbM4 ge- nome is very similar to that of M1 suggesting that the methanogenesis pathway and central me- tabolism of these strains are highly similar, and both organisms are likely to be amenable to in- hibition by small molecule inhibitors and vaccine-based methane mitigation technologies tar- geting these conserved features. The main differences compared to M1 are that AbM4 has a complete coenzyme M biosynthesis pathway and does not contain a prophage or non- ribosomal peptide synthase genes. However, AbM4 has a large CRISPR region and several type I and type II restriction-modification system components. Unusually, DNA-directed RNA poly- merase β’and β’’ subunits of AbM4 are joined, a feature only previously observed in some thermophilic archaea.
    [Show full text]