Pharmacometabolomics of Response to Sertraline and to Placebo in Major Depressive Disorder – Possible Role for Methoxyindole Pathway
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Targeted Neurotransmitter Quantification and Nontargeted
RSC Advances View Article Online PAPER View Journal | View Issue A targeted neurotransmitter quantification and nontargeted metabolic profiling method for Cite this: RSC Adv., 2020, 10,18305 pharmacometabolomics analysis of olanzapine by using UPLC-HRMS† Dan Liu,‡a Zhuoling An,‡b Pengfei Li,b Yanhua Chen,a Ruiping Zhang, a Lihong Liu,*b Jiuming He *a and Zeper Ablizac Neurotransmitters (NTs) are specific endogenous metabolites that act as “messengers” in synaptic transmission and are widely distributed in the central nervous system. Olanzapine (OLZ), a first-line antipsychotic drug, plays a key role in sedation and hypnosis, but, it presents clinical problems with a narrow therapeutic window, large individual differences and serious adverse effects, as well as an unclear mechanism in vivo. Herein, a simultaneous targeted NT quantification and nontargeted metabolomics method was developed and validated for pharmacometabolomics analysis of OLZ by Creative Commons Attribution-NonCommercial 3.0 Unported Licence. using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). Considering the low physiological concentrations of NTs, a full MS scan and target selective ion monitoring (tSIM) scan were combined for nontargeted metabolomics and targeted NT quantification, respectively. By using this strategy, NTs at a very low physiological concentration can be accurately detected and quantified in biological samples by tSIM scans. Moreover, simultaneously nontargeted profiling was also achieved by the full -
Metabolomics Profiling and Pathway Analysis of Human Plasma and Urine T Reveal Further Insights Into the Multifactorial Nature of Coronary Artery Disease ⁎ ⁎ Arwa M
Clinica Chimica Acta 493 (2019) 112–122 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca Metabolomics profiling and pathway analysis of human plasma and urine T reveal further insights into the multifactorial nature of coronary artery disease ⁎ ⁎ Arwa M. Amina,b, ,1, Hamza Mostafaa, ,1, Nor Hayati Arifc, Muhamad Ali SK Abdul Kadera,d, Yuen Kah Haya a School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia b Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia c Psychiatry Department, Hospital Pulau Pinang, Malaysia d Cardiology Department, Hospital Pulau Pinang, Penang, Malaysia ARTICLE INFO ABSTRACT Keywords: Background: Coronary artery disease (CAD) claims lives yearly. Nuclear magnetic resonance (1H NMR) meta- Coronary artery disease bolomics analysis is efficient in identifying metabolic biomarkers which lend credence to diagnosis. Weaimedto 1 H NMR identify CAD metabotypes and its implicated pathways using 1H NMR analysis. Metabolomics Methods: We analysed plasma and urine samples of 50 stable CAD patients and 50 healthy controls using 1H Systems biology NMR. Orthogonal partial least square discriminant analysis (OPLS-DA) followed by multivariate logistic re- Single nucleotide polymorphism gression (MVLR) models were developed to indicate the discriminating metabotypes. Metabolic pathway ana- Gut microbiota lysis was performed to identify the implicated pathways. Results: Both plasma and urine OPLS-DA models had specificity, sensitivity and accuracy of 100%, 96% and 98%, respectively. Plasma MVLR model had specificity, sensitivity, accuracy and AUROC of 92%, 86%, 89%and 0.96, respectively. The MVLR model of urine had specificity, sensitivity, accuracy and AUROC of 90%, 80%, 85% and 0.92, respectively. -
The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease
brain sciences Perspective The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease Jung Goo Lee 1,2 , Young Sup Woo 3, Sung Woo Park 2,4, Dae-Hyun Seog 5, Mi Kyoung Seo 6 and Won-Myong Bahk 3,* 1 Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan 47392, Korea; [email protected] 2 Paik Institute for Clinical Research, Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea; [email protected] 3 Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea; [email protected] 4 Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea 5 Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea; [email protected] 6 Paik Institute for Clinical Research, Inje University, Busan 47392, Korea; [email protected] * Correspondence: [email protected] Received: 16 September 2019; Accepted: 19 October 2019; Published: 21 October 2019 Abstract: Melatonin is a hormone that is secreted by the pineal gland. To date, melatonin is known to regulate the sleep cycle by controlling the circadian rhythm. However, recent advances in neuroscience and molecular biology have led to the discovery of new actions and effects of melatonin. In recent studies, melatonin was shown to have antioxidant activity and, possibly, to affect the development of Alzheimer’s disease (AD). In addition, melatonin has neuroprotective effects and affects neuroplasticity, thus indicating potential antidepressant properties. In the present review, the new functions of melatonin are summarized and a therapeutic target for the development of new drugs based on the mechanism of action of melatonin is proposed. -
Review Article the Use of Omic Technologies Applied to Traditional Chinese Medicine Research
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2017, Article ID 6359730, 19 pages https://doi.org/10.1155/2017/6359730 Review Article The Use of Omic Technologies Applied to Traditional Chinese Medicine Research Dalinda Isabel Sánchez-Vidaña,1 Rahim Rajwani,2 and Man-Sau Wong3 1 Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 2Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 3Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Correspondence should be addressed to Man-Sau Wong; [email protected] Received 28 July 2016; Revised 23 October 2016; Accepted 24 October 2016; Published 31 January 2017 Academic Editor: Fabio Firenzuoli Copyright © 2017 Dalinda Isabel Sanchez-Vida´ na˜ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Natural products represent one of the most important reservoirs of structural and chemical diversity for the generation of leads in the drug development process. A growing number of researchers have shown interest in the development of drugs based on Chinese herbs. In this review, the use and potential of omic technologies as powerful tools in the modernization of traditional Chinese medicine are discussed. The analytical combination from each omic approach is crucial for understanding the working mechanisms of cells, tissues, organs, and organisms as well as the mechanisms of disease. Gradually, omic approaches have been introduced in every stage of the drug development process to generate high-quality Chinese medicine-based drugs. -
Drug Repurposing for the Management of Depression: Where Do We Stand Currently?
life Review Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Hosna Mohammad Sadeghi 1,†, Ida Adeli 1,† , Taraneh Mousavi 1,2, Marzieh Daniali 1,2, Shekoufeh Nikfar 3,4,5 and Mohammad Abdollahi 1,2,* 1 Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] (H.M.S.); [email protected] (I.A.); [email protected] (T.M.); [email protected] (M.D.) 2 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran 3 Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] 4 Pharmaceutical Sciences Research Center (PSRC) and the Pharmaceutical Management and Economics Research Center (PMERC), Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran 5 Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran * Correspondence: [email protected] † Equally contributed as first authors. Citation: Mohammad Sadeghi, H.; Abstract: A slow rate of new drug discovery and higher costs of new drug development attracted Adeli, I.; Mousavi, T.; Daniali, M.; the attention of scientists and physicians for the repurposing and repositioning of old medications. Nikfar, S.; Abdollahi, M. Drug Experimental studies and off-label use of drugs have helped drive data for further studies of ap- Repurposing for the Management of proving these medications. -
Us 2008/0280991 A1 8, 2007. Pdco
US 20080280991A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0280991 A1 Gant et al. (43) Pub. Date: Nov. 13, 2008 (54) SUBSTITUTED NAPHTHALENES (52) U.S. Cl. ......................................... 514/630; 564/219 (75) Inventors: Thomas G. Gant, Carlsbad, CA (US); Sepehr Sarshar, Cardiff by the Sea, CA (US) (57) ABSTRACT Correspondence Address: Disclosed herein are substituted naphthalene-based melato GLOBAL PATENT GROUP - APX nin (MT) receptor modulators and/or 5-HT receptor modula Ms. LaVern Hall tors of Formula I, process of preparation thereof, pharmaceu 10411 Clayton Road, Suite 304 tical compositions thereof, and methods of use thereof. ST. LOUIS, MO 63131 (US) (73) Assignee: AUSPEX O Formula I PHARMACEUTICALS, INC., Vista, CA (US) Ran R15 (21) Appl. No.: 12/116,636 R R16 R11 R13 7 (22) Filed: May 7, 2008 R12 R16 Related U.S. Application Data Ro (60) Provisional application No. 60/928,343, filed on May R O Rs 2 R3 8, 2007. Publication Classification PDCOR R (51) Int. Cl. Rs R6 A6 IK3I/I65 (2006.01) C07C 23.3/05 (2006.01) US 2008/0280991 A1 Nov. 13, 2008 SUBSTITUTED NAPHTHALENES nant metabolite is a naphthol. “S 21517. that has 100-fold less potency for the melatonin receptor than the parent com pound. Long term toxicology studies of these metabolites are 0001. This application claims the benefit of priority of lacking. All of these transformations, among other potential U.S. provisional application No. 60/928,343, filed May 8, transformations, can and do occur through polymorphically 2007, the disclosure of which is hereby incorporated by ref expressed enzymes thus exacerbating interpatient variability. -
Npp200972.Pdf
Neuropsychopharmacology (2009) 34, 2390–2403 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Mechanisms Contributing to the Phase-Dependent Regulation of Neurogenesis by the Novel Antidepressant, Agomelatine, in the Adult Rat Hippocampus Ame´lie Soumier1, Mounira Banasr1, Sylviane Lortet1, Fre´de´rique Masmejean1, Nathalie Bernard1, Lydia Kerkerian-Le-Goff1, Cecilia Gabriel2, Mark J Millan3, Elisabeth Mocaer2 and Annie Daszuta*,1 1 2 3 IC2N, IBDML, UMR 6216, Marseille, France; IRIS, Courbevoie, France; IDR Servier, Croissy-sur-Seine, France Agomelatine is a novel antidepressant acting as a melatonergic receptor agonist and serotonergic (5-HT ) receptor antagonist. In adult 2C rats, chronic agomelatine treatment enhanced cell proliferation and neurogenesis in the ventral hippocampus (VH), a region pertinent to mood disorders. This study compared the effects of agomelatine on cell proliferation, maturation, and survival and investigated the cellular mechanisms underlying these effects. Agomelatine increased the ratio of mature vs immature neurons and enhanced neurite outgrowth of granular cells, suggesting an acceleration of maturation. The influence of agomelatine on maturation and survival was accompanied by a selective increase in the levels of BDNF (brain-derived neurotrophic factor) vs those of VEGF (vascular endothelial factor) and IGF-1 (insulin-like growth factor 1), which were not affected. Agomelatine also activated several cellular signals (extracellular signal-regulated kinase1/2, protein kinase B, and glycogen synthase kinase 3b) known to be modulated by antidepressants and implicated in the control of proliferation/survival. Furthermore, as agomelatine possesses both melatonergic agonist and serotonergic (5-HT2C) antagonist properties, we determined whether melatonin and 5-HT2C receptor antagonists similarly influence cell proliferation and survival. -
Association of Selective Serotonin Reuptake Inhibitors with the Risk for Spontaneous Intracranial Hemorrhage
Supplementary Online Content Renoux C, Vahey S, Dell’Aniello S, Boivin J-F. Association of selective serotonin reuptake inhibitors with the risk for spontaneous intracranial hemorrhage. JAMA Neurol. Published online December 5, 2016. doi:10.1001/jamaneurol.2016.4529 eMethods 1. List of Antidepressants for Cohort Entry eMethods 2. List of Antidepressants According to the Degree of Serotonin Reuptake Inhibition eMethods 3. Potential Confounding Variables Included in Multivariate Models eMethods 4. Sensitivity Analyses eFigure. Flowchart of Incident Antidepressant (AD) Cohort Definition and Case- Control Selection eTable 1. Crude and Adjusted Rate Ratios of Intracerebral Hemorrhage Associated With Current Use of SSRIs Relative to TCAs eTable 2. Crude and Adjusted Rate Ratios of Subarachnoid Hemorrhage Associated With Current Use of SSRIs Relative to TCAs eTable 3. Crude and Adjusted Rate Ratios of Intracranial Extracerebral Hemorrhage Associated With Current Use of SSRIs Relative to TCAs. eTable 4. Crude and Adjusted Rate Ratios of Intracerebral Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak eTable 5. Crude and Adjusted Rate Ratios of Subarachnoid Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak eTable 6. Crude and Adjusted Rate Ratios of Intracranial Extracerebral Hemorrhage Associated With Current Use of Antidepressants With Strong Degree of Inhibition of Serotonin Reuptake Relative to Weak This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/02/2021 eMethods 1. -
Mass Spectrometry-Based Applications and Analytical Method Development for Metabolomics
Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland MASS SPECTROMETRY-BASED APPLICATIONS AND ANALYTICAL METHOD DEVELOPMENT FOR METABOLOMICS Päivi Pöhö ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Pharmacy of the University of Helsinki, for public examination in lecture room 1041, Biocenter 2, on 31 January 2020, at 12 noon. Helsinki 2020 ©Päivi Pöhö ISBN 978-951-51-5757-7 (print) ISBN 978-951-51-5758-4 (online) ISSN 2342-3161 (print) ISSN 2342-317X (online) http://ethesis.helsinki.fi Unigrafia, Helsinki, Finland, 2020 Published in DSHealth series ‘Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis’ The Faculty of Pharmacy uses the Urkund system (plagiarism recognition) to examine all doctoral dissertations. Supervisors Professor Risto Kostiainen Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland Professor Tapio Kotiaho Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy and Department of Chemistry Faculty of Science University of Helsinki Finland Reviewers Professor Kati Hanhineva Institute of Public Health and Clinical Nutrition Faculty of Health Sciences University of Eastern Finland Kuopio Finland Professor Uwe Karst Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany Opponent Professor Jonas Bergquist Department of Chemistry - BMC Uppsala University Uppsala Sweden 3 ABSTRACT Metabolites are small molecules present in a biological system that have multiple important biological functions. Changes in metabolite levels reflect genetic and environmental alterations and play a role in multiple diseases. Metabolomics is a discipline that aims to analyze all the small molecules in a biological system simultaneously. -
A Study on the Effects of Agomelatine on Food Intake and Body Weight in Restraint Stress Model in Adult Swiss Albino Mice
Online - 2455-3891 Vol 10, Issue 9, 2017 Print - 0974-2441 Research Article A STUDY ON THE EFFECTS OF AGOMELATINE ON FOOD INTAKE AND BODY WEIGHT IN RESTRAINT STRESS MODEL IN ADULT SWISS ALBINO MICE SHANMUGAPRIYA S*, NIVEDHITHAA S, BHUVANESWARI K Department of Pharmacology, PSG Institute of Medical Sciences and Research, Peelamedu, Coimbatore, Tamil Nadu, India. Email: [email protected] Received: 01 May 2017, Revised and Accepted: 25 May 2017 ABSTRACT Objectives: Agomelatine is a novel melatonin (MT) receptor agonist at MT 1 and 2, serotonin receptor antagonist and an effective chronobiotic agent. The study was designed to evaluate the effects of agomelatine on body weight and food intake in restraint stress model in adult Swiss albino mice. Methods: After the approval of Institutional Animal Ethics Committee, 40 male Swiss albino mice were randomly divided into four groups of 10 animals each; two were treatment groups which received 25 mg/kg (low dose) agomelatine, 50 mg/kg (high dose) agomelatine, standard group given trazodone and the control group administered the vehicle (1% hydroxyethyl cellulose [HEC]) intraperitoneally for the last 14 days in the 3 weeks study period. Chronic restraint stress was given for 4 hrs per day for all groups starting from day 0 to 21. Results: Using paired t-test, both 12 hrs (p=0.011) and 24 hrs (p<0.001) food intake in the high dose agomelatine group were significantly increased. Between groups using ANOVA test showed a statistically significant increase in food intake for this group when compared to the control group. Unlike the low dose agomelatine group (p=0.205), the mean body weight in the group treated with high dose agomelatine revealed a statistically significant rise compared to that of the control (p=0.001) in ANOVA test. -
New-Medicine-Report-Agomelatine
Suffolk Mental Health Partnership NHS Trust Drug & Therapeutics Committee New Medicine Report Medicine Agomelatine (Valdoxan, Servier) Document Agreed at Suffolk D&T 18th February 2009 status Date of last 22nd July 2009 revision Traffic light Double Red - Prescribing not supported in either general practice or decision secondary/tertiary care Prescribers 5 - Judgement reserved rating Mechanism Agomelatine is a synthetic analogue of the hormone melatonin, and strongly of action binds to and stimulates the activity of melatonin MT1 and MT2 receptors, normalising disturbed circadian rhythms and disrupted sleep-wake cycles. (Melatonin regulates circadian rhythms, including sleep-wake cycles.) Disturbances in circadian rhythms have been implemented in the development of mood disorders. Agomelatine is also a serotonin-receptor antagonist and binds to and inhibits the activity of serotonin 5HT-2C receptors. This antagonism is associated with antidepressant and anti-anxiety activity, and increases slow-wave sleep. Agomelatine does not affect the uptake of serotonin, noradrenaline or dopamine. The inhibition of 5HT-2C receptors increases noradrenaline and dopamine in the frontal cortex and may contribute to agomelatine’s antidepressant activity. Indication Treatment of major depressive disorders in adults Dosage 25mg increasing to 50mg daily Treatment SSRIs alternatives Review prepared by Katie Smith, Director, East Anglia Medicines Information Service May be freely copied by NHS agencies, not to be used for promotional purposes This is an SMHPT -
Australian Public Assessment Report for Agomelatine
Australian Public Assessment Report for Agomelatine Proprietary Product Name: Valdoxan Submission No: PM-2009-00483-3-1 Sponsor: Servier Laboratories (Australia) Pty Ltd October 2010 Contents I. Introduction to Product Submission........................................................................3 Submission Details.................................................................................................................. 3 Product Background................................................................................................................ 3 Regulatory Status .................................................................................................................... 5 Product Information ................................................................................................................ 5 II. Quality Findings.........................................................................................................6 Introduction............................................................................................................................. 6 Drug Product........................................................................................................................... 6 Bioavailability......................................................................................................................... 6 Quality Summary and Conclusions......................................................................................... 7 III. Nonclinical Findings ..................................................................................................7