Binding Sites Influence AHR Ligand–Dependent Gene Expression S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Targeted Neurotransmitter Quantification and Nontargeted
RSC Advances View Article Online PAPER View Journal | View Issue A targeted neurotransmitter quantification and nontargeted metabolic profiling method for Cite this: RSC Adv., 2020, 10,18305 pharmacometabolomics analysis of olanzapine by using UPLC-HRMS† Dan Liu,‡a Zhuoling An,‡b Pengfei Li,b Yanhua Chen,a Ruiping Zhang, a Lihong Liu,*b Jiuming He *a and Zeper Ablizac Neurotransmitters (NTs) are specific endogenous metabolites that act as “messengers” in synaptic transmission and are widely distributed in the central nervous system. Olanzapine (OLZ), a first-line antipsychotic drug, plays a key role in sedation and hypnosis, but, it presents clinical problems with a narrow therapeutic window, large individual differences and serious adverse effects, as well as an unclear mechanism in vivo. Herein, a simultaneous targeted NT quantification and nontargeted metabolomics method was developed and validated for pharmacometabolomics analysis of OLZ by Creative Commons Attribution-NonCommercial 3.0 Unported Licence. using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). Considering the low physiological concentrations of NTs, a full MS scan and target selective ion monitoring (tSIM) scan were combined for nontargeted metabolomics and targeted NT quantification, respectively. By using this strategy, NTs at a very low physiological concentration can be accurately detected and quantified in biological samples by tSIM scans. Moreover, simultaneously nontargeted profiling was also achieved by the full -
Metabolomics Profiling and Pathway Analysis of Human Plasma and Urine T Reveal Further Insights Into the Multifactorial Nature of Coronary Artery Disease ⁎ ⁎ Arwa M
Clinica Chimica Acta 493 (2019) 112–122 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca Metabolomics profiling and pathway analysis of human plasma and urine T reveal further insights into the multifactorial nature of coronary artery disease ⁎ ⁎ Arwa M. Amina,b, ,1, Hamza Mostafaa, ,1, Nor Hayati Arifc, Muhamad Ali SK Abdul Kadera,d, Yuen Kah Haya a School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia b Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia c Psychiatry Department, Hospital Pulau Pinang, Malaysia d Cardiology Department, Hospital Pulau Pinang, Penang, Malaysia ARTICLE INFO ABSTRACT Keywords: Background: Coronary artery disease (CAD) claims lives yearly. Nuclear magnetic resonance (1H NMR) meta- Coronary artery disease bolomics analysis is efficient in identifying metabolic biomarkers which lend credence to diagnosis. Weaimedto 1 H NMR identify CAD metabotypes and its implicated pathways using 1H NMR analysis. Metabolomics Methods: We analysed plasma and urine samples of 50 stable CAD patients and 50 healthy controls using 1H Systems biology NMR. Orthogonal partial least square discriminant analysis (OPLS-DA) followed by multivariate logistic re- Single nucleotide polymorphism gression (MVLR) models were developed to indicate the discriminating metabotypes. Metabolic pathway ana- Gut microbiota lysis was performed to identify the implicated pathways. Results: Both plasma and urine OPLS-DA models had specificity, sensitivity and accuracy of 100%, 96% and 98%, respectively. Plasma MVLR model had specificity, sensitivity, accuracy and AUROC of 92%, 86%, 89%and 0.96, respectively. The MVLR model of urine had specificity, sensitivity, accuracy and AUROC of 90%, 80%, 85% and 0.92, respectively. -
Pharmacometabolomics of Response to Sertraline and to Placebo in Major Depressive Disorder – Possible Role for Methoxyindole Pathway
Pharmacometabolomics of Response to Sertraline and to Placebo in Major Depressive Disorder – Possible Role for Methoxyindole Pathway Hongjie Zhu1., Mikhail B. Bogdanov2., Stephen H. Boyle1, Wayne Matson3, Swati Sharma3, Samantha Matson3,4, Erik Churchill1, Oliver Fiehn5, John A. Rush6, Ranga R. Krishnan1,6, Eve Pickering7, Marielle Delnomdedieu8, Rima Kaddurah-Daouk1*, Pharmacometabolomics Research Network 1 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America, 2 Department of Neurology and Neuroscience Weill Cornell Medical College, New York, New York, United States of America, 3 Department of Systems Biochemistry, Bedford VA Medical Center, Bedford, Massachusetts, United States of America, 4 Massachusetts General Hospital, Boston, Massachusetts, United States of America, 5 Genome Center, University of California Davis, Davis, California, United States of America, 6 Duke-NUS Graduate Medical School, Singapore, Singapore, 7 Pfizer Global R&D, Clinical Research Statistics, Groton, Connecticut, United States of America, 8 Pfizer Global R&D, Neuroscience Clinical Research, Groton, Connecticut, United States of America Abstract Therapeutic response to selective serotonin (5-HT) reuptake inhibitors in Major Depressive Disorder (MDD) varies considerably among patients, and the onset of antidepressant therapeutic action is delayed until after 2 to 4 weeks of treatment. The objective of this study was to analyze changes within methoxyindole and kynurenine (KYN) branches of tryptophan pathway to determine whether differential regulation within these branches may contribute to mechanism of variation in response to treatment. Metabolomics approach was used to characterize early biochemical changes in tryptophan pathway and correlated biochemical changes with treatment outcome. Outpatients with MDD were randomly assigned to sertraline (n = 35) or placebo (n = 40) in a double-blind 4-week trial; response to treatment was measured using the 17-item Hamilton Rating Scale for Depression (HAMD17). -
Review Article the Use of Omic Technologies Applied to Traditional Chinese Medicine Research
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2017, Article ID 6359730, 19 pages https://doi.org/10.1155/2017/6359730 Review Article The Use of Omic Technologies Applied to Traditional Chinese Medicine Research Dalinda Isabel Sánchez-Vidaña,1 Rahim Rajwani,2 and Man-Sau Wong3 1 Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 2Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 3Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Correspondence should be addressed to Man-Sau Wong; [email protected] Received 28 July 2016; Revised 23 October 2016; Accepted 24 October 2016; Published 31 January 2017 Academic Editor: Fabio Firenzuoli Copyright © 2017 Dalinda Isabel Sanchez-Vida´ na˜ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Natural products represent one of the most important reservoirs of structural and chemical diversity for the generation of leads in the drug development process. A growing number of researchers have shown interest in the development of drugs based on Chinese herbs. In this review, the use and potential of omic technologies as powerful tools in the modernization of traditional Chinese medicine are discussed. The analytical combination from each omic approach is crucial for understanding the working mechanisms of cells, tissues, organs, and organisms as well as the mechanisms of disease. Gradually, omic approaches have been introduced in every stage of the drug development process to generate high-quality Chinese medicine-based drugs. -
Viewpoint, from the Literature, Most of the Genes in Our Sets Are Known to Be Strongly Related to Cancer
BMC Bioinformatics BioMed Central Research Open Access A voting approach to identify a small number of highly predictive genes using multiple classifiers Md Rafiul Hassan*1, M Maruf Hossain*1, James Bailey1,2, Geoff Macintyre1,2, Joshua WK Ho3,4 and Kotagiri Ramamohanarao1,2 Address: 1Department of Computer Science and Software Engineering, The University of Melbourne, Victoria 3010, Australia, 2NICTA Victoria Laboratory, The University of Melbourne, Victoria 3010, Australia, 3School of Information Technologies, The University of Sydney, NSW 2006, Australia and 4NICTA, Australian Technology Park, Eveleigh, NSW 2015, Australia Email: Md Rafiul Hassan* - [email protected]; M Maruf Hossain* - [email protected]; James Bailey - [email protected]; Geoff Macintyre - [email protected]; Joshua WK Ho - [email protected]; Kotagiri Ramamohanarao - [email protected] * Corresponding authors from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009) Beijing, China. 13–16 January 2009 Published: 30 January 2009 <supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement> BMC Bioinformatics 2009, 10(Suppl 1):S19 doi:10.1186/1471-2105-10-S1-S19 This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S19 © 2009 Hassan et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Epigenetic Reprogramming Underlies Efficacy of DNA Demethylation
www.nature.com/scientificreports OPEN Epigenetic reprogramming underlies efcacy of DNA demethylation therapy in osteosarcomas Naofumi Asano 1,2, Hideyuki Takeshima3, Satoshi Yamashita3, Hironori Takamatsu2,3, Naoko Hattori3, Takashi Kubo4, Akihiko Yoshida5, Eisuke Kobayashi6, Robert Nakayama2, Morio Matsumoto2, Masaya Nakamura2, Hitoshi Ichikawa 4, Akira Kawai6, Tadashi Kondo1 & Toshikazu Ushijima 3* Osteosarcoma (OS) patients with metastasis or recurrent tumors still sufer from poor prognosis. Studies have indicated the efcacy of DNA demethylation therapy for OS, but the underlying mechanism is still unclear. Here, we aimed to clarify the mechanism of how epigenetic therapy has therapeutic efcacy in OS. Treatment of four OS cell lines with a DNA demethylating agent, 5-aza-2′- deoxycytidine (5-aza-dC) treatment, markedly suppressed their growth, and in vivo efcacy was further confrmed using two OS xenografts. Genome-wide DNA methylation analysis showed that 10 of 28 primary OS had large numbers of methylated CpG islands while the remaining 18 OS did not, clustering together with normal tissue samples and Ewing sarcoma samples. Among the genes aberrantly methylated in primary OS, genes involved in skeletal system morphogenesis were present. Searching for methylation-silenced genes by expression microarray screening of two OS cell lines after 5-aza-dC treatment revealed that multiple tumor-suppressor and osteo/chondrogenesis-related genes were re-activated by 5-aza-dC treatment of OS cells. Simultaneous activation of multiple genes related to osteogenesis and cell proliferation, namely epigenetic reprogramming, was considered to underlie the efcacy of DNA demethylation therapy in OS. Osteosarcoma (OS) is the most common malignant tumor of the bone in children and adolescents1. -
Mass Spectrometry-Based Applications and Analytical Method Development for Metabolomics
Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland MASS SPECTROMETRY-BASED APPLICATIONS AND ANALYTICAL METHOD DEVELOPMENT FOR METABOLOMICS Päivi Pöhö ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Pharmacy of the University of Helsinki, for public examination in lecture room 1041, Biocenter 2, on 31 January 2020, at 12 noon. Helsinki 2020 ©Päivi Pöhö ISBN 978-951-51-5757-7 (print) ISBN 978-951-51-5758-4 (online) ISSN 2342-3161 (print) ISSN 2342-317X (online) http://ethesis.helsinki.fi Unigrafia, Helsinki, Finland, 2020 Published in DSHealth series ‘Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis’ The Faculty of Pharmacy uses the Urkund system (plagiarism recognition) to examine all doctoral dissertations. Supervisors Professor Risto Kostiainen Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland Professor Tapio Kotiaho Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy and Department of Chemistry Faculty of Science University of Helsinki Finland Reviewers Professor Kati Hanhineva Institute of Public Health and Clinical Nutrition Faculty of Health Sciences University of Eastern Finland Kuopio Finland Professor Uwe Karst Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany Opponent Professor Jonas Bergquist Department of Chemistry - BMC Uppsala University Uppsala Sweden 3 ABSTRACT Metabolites are small molecules present in a biological system that have multiple important biological functions. Changes in metabolite levels reflect genetic and environmental alterations and play a role in multiple diseases. Metabolomics is a discipline that aims to analyze all the small molecules in a biological system simultaneously. -
Sex-Differential DNA Methylation and Associated Regulation Networks in Human Brain Implicated in the Sex-Biased Risks of Psychiatric Disorders
Molecular Psychiatry https://doi.org/10.1038/s41380-019-0416-2 ARTICLE Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders 1,2 1,2 1 2 3 4 4 4 Yan Xia ● Rujia Dai ● Kangli Wang ● Chuan Jiao ● Chunling Zhang ● Yuchen Xu ● Honglei Li ● Xi Jing ● 1 1,5 2 6 1,2,7 1,2,8 Yu Chen ● Yi Jiang ● Richard F. Kopp ● Gina Giase ● Chao Chen ● Chunyu Liu Received: 8 November 2018 / Revised: 18 March 2019 / Accepted: 22 March 2019 © Springer Nature Limited 2019 Abstract Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms behind sex-bias are not fully understood. DNA methylation plays important roles in regulating gene expression, ultimately impacting sexually different characteristics of the human brain. Most previous literature focused on DNA methylation alone without considering the regulatory network and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex regulatory network to connect genetic and environmental factors with high-order brain functions, we investigated the 1234567890();,: 1234567890();,: regulatory networks associated with different DNA methylation and assessed their contribution to the risks of psychiatric disorders. We compiled data from 1408 postmortem brain samples in 3 collections to identify sex-differentially methylated positions (DMPs) and regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes were enriched in neuronal related pathways. We extended the regulatory networks related to sex-differential methylation and psychiatric disorders by integrating methylation quantitative trait loci (meQTLs), gene expression, and protein–protein interaction data. -
Gene Silencing of TSPYL5 Mediated by Aberrant Promoter Methylation in Gastric Cancers Yeonjoo Jung1, Jinah Park1, Yung-Jue Bang1,2 and Tae-You Kim1,2
Laboratory Investigation (2008) 88, 153–160 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers Yeonjoo Jung1, Jinah Park1, Yung-Jue Bang1,2 and Tae-You Kim1,2 DNA methylation is crucial for normal development, but gene expression altered by DNA hypermethylation is often associated with human diseases, especially cancers. The gene TSPYL5, encoding testis-specific Y-like protein, was pre- viously identified in microarray screens for genes induced by the inhibition of DNA methylation and histone deacetylation in glioma cell lines. The TSPYL5 showed a high frequency of DNA methylation-mediated silencing in both glioma cell lines and primary glial tumors. We now report that TSPYL5 is also inactivated by DNA methylation and could be a putative epigenetic target gene in gastric cancers. We found that the expression of TSPYL5 mRNA was frequently downregulated and inversely correlated with DNA methylation in seven out of nine gastric cancer cell lines. TSPYL5 mRNA expression was also restored after treating with a DNA methyltransferase inhibitor. In primary gastric tumors, methylation-specific PCR results in 23 of the 36 (63.9%) cases revealed that the hypermethylation at CpG islands of the TSPYL5 was detectable at a high frequency. Furthermore, TSPYL5 suppressed the growth of gastric cancer cells as demonstrated by a colony for- mation assay. Thus, strong associations between TSPYL5 expression and hypermethylation were observed, and aberrant methylation at a CpG island of TSPYL5 may play an important role in development of gastric cancers. Laboratory Investigation (2008) 88, 153–160; doi:10.1038/labinvest.3700706; published online 3 December 2007 KEYWORDS: DNMT inhibitor; gastric cancer; NAP domain; promoter hypermethylation; TSPYL5 Epigenetic events are heritable modifications that regulate TSPYL6. -
Rna-Sequencing Applications: Gene Expression Quantification and Methylator Phenotype Identification
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2013 RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION Guoshuai Cai Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Cai, Guoshuai, "RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 386. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/386 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION -
Single-Nucleotide Polymorphisms in the TSPYL-4 and NT5DC1 Genes Are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease
MOLECULAR MEDICINE REPORTS 6: 631-638, 2012 Single-nucleotide polymorphisms in the TSPYL-4 and NT5DC1 genes are associated with susceptibility to chronic obstructive pulmonary disease YI GUO1*, YI GONG2*, GUOCHAO SHI1, KUN YANG1, CHUNMING PAN3, MIN LI1, QINGYUN LI1, QIJIAN CHENG1, RANRAN DAI1, LIANG FAN1 and HUANYING WAN1 1Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University (SJTU), School of Medicine; 2Department of Respiratory Medicine, Huashan Hospital, Fudan University; 3Ruijin Hospital, State Key Laboratory of Medical Genomics, Molecular Medicine Center, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200025, P.R. China Received February 12, 2012; Accepted June 18, 2012 DOI: 10.3892/mmr.2012.964 Abstract. The risk of developing chronic obstructive pulmo- block. We constructed the TSPYL-4 and NT5DC1 haplo- nary disease (COPD) is partially determined by genetic types of the cases and controls, but no significant difference and environmental factors. Many published candidate gene between the two groups was found. rs3749893 A allele of studies show conflicting results due to ethnic differences TSPYL-4 and rs1052443 C allele of NT5DC1 were associated and sample sizes. The number of these studies carried out in with a protective effect against the deterioration of pulmonary Chinese populations is small. To investigate candidate genes function. In conclusion, TSPYL-4 and NT5DC1 gene poly- and haplotypes for susceptibility to COPD in a southern morphisms are associated with susceptibility to COPD and Han Chinese population, we performed genotyping of DNA pulmonary function. samples in 200 COPD patients and 250 control subjects by analyzing 54 single-nucleotide polymorphisms (SNPs) in Introduction 23 genes associated with the development of COPD and/or pulmonary function identified by genome-wide association Chronic obstructive pulmonary disease (COPD) is expected studies (GWAS). -
Pan-Cancer Transcriptome Analysis Reveals a Gene Expression
Modern Pathology (2016) 29, 546–556 546 © 2016 USCAP, Inc All rights reserved 0893-3952/16 $32.00 Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin Qinghua Xu1,6, Jinying Chen1,6, Shujuan Ni2,3,4,6, Cong Tan2,3,4,6, Midie Xu2,3,4, Lei Dong2,3,4, Lin Yuan5, Qifeng Wang2,3,4 and Xiang Du2,3,4 1Canhelp Genomics, Hangzhou, Zhejiang, China; 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 3Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; 4Institute of Pathology, Fudan University, Shanghai, China and 5Pathology Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site, accounts for ~ 3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an important clinical application of molecular diagnostics. Previous studies have paved the way for gene expression-based tumor type classification. In this study, we have established a comprehensive database integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22 common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of 96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626 primary tumors, of which 97.1% of cases were correctly classified.