(Guiyu Oneiros)⭥㚵㔎 㾯㲍

Total Page:16

File Type:pdf, Size:1020Kb

(Guiyu Oneiros)⭥㚵㔎 㾯㲍 ͙఩⻽႒: ౜⤯⻽႒ 2010 Ꭰじ40 ࢣじ9 ᱋: 1191 ~ 1203 《中国科学》》杂志社 www.scichina.com earth.scichina.com SCIENCE CHINA PRESS 䆎 ᭛ 䐟㒕ギ㧃峃䈄㏁㗯⿤⺎䈄(Guiyu oneiros)⭥㚵㔎 㾯㲍 த෨èé, ᅋਖ਼è* ķ Ё೑⾥ᄺ䰶স㛞Ợࡼ⠽ϢসҎ㉏ⷨお᠔, 㛞Ợࡼ⠽䖯࣪㋏㒳ᄺ䞡⚍ᅲ偠ᅸ, ࣫Ҁ 100044; ĸ Ё೑⾥ᄺ䰶ⷨお⫳䰶, ࣫Ҁ 100049 * 㘨㋏Ҏ, E-mail: [email protected] ᬊ〓᮹ᳳ: 2010-04-06; ᥹ফ᮹ᳳ: 2010-07-13 ೑ᆊ䞡⚍෎⸔ⷨおথሩ䅵ߦ乍Ⳃ(㓪ো: 2006CB806400)ǃЁ೑⾥ᄺ䰶ⶹ䆚߯ᮄᎹ⿟乍Ⳃ(㓪ো: KZCX2-YW-156)ǃ೑ᆊ㞾✊⾥ᄺ෎䞥(ᡍޚ ো: 40930208)੠Ё೑⾥ᄺ䰶ǃ೑ᆊ໪೑ϧᆊሔ߯ᮄಶ䯳೑䰙ড়԰ӭԈ䅵ߦ䌘ࡽ ဨ(Guiyu oneiros Zhu et al., 2009)ԅ෈Ϧ໹ൟඋ ݇䬂䆡ڦफ໸kਲ਼ܸؤ೭ॴఝᴚဨफݮޚᨬ㽕 ·ำ ဨc͊঄ဨ(Psarolepis)ۤ ఝᴚဨफڦဨᄆຂ(ͧࣳڦႏ. ำᄯၽٲ໸಴ۤՄުԅઝ঴ڀჸ, ͧࣳ঴Մԅ੧ᄩ ဨफڀ࿷ ᅣѢဨ(Onychodus)cํࣄဨcࣂݿဨफྻۤڶ໸಴. ඹڀࣄဨ(Achoania))ᄯ݋؏ॴ঴Մԅ੧ᄩํ ગ঴໹ൟ ဨफԅၐಳඋჸēڀ࣡஍෌ͧถಾ࿷ڀݧ஍౨᭄ڀ࣡஍΄ၘ܊ෳΐࣄ܊ :׵ᴚဨफԅΑࠀມವރ ලၗ ޠᅣѢဨݾ ᄝঝރ঄ဨcํࣄဨྻ͊ۤٲဨԅ౑Լ௕ࠒڦ .ٲωׄලၗࠒڀఝᴚဨफۤ׵ᴚဨफᄯԅब ڳࠋ. ူཷೆဨ(Youngolepis)ۤ୥࿓ဨ ᄯڑဨ֟၂ԅ঴޷ڦนອഛ. ֟Ӓԅ঴ຏݴؘᆂ௕ࢶટࠃವॴ ࢬڕೆဨۤࣄ঄ဨफ(porolepiforms)ྡྷᄡ, ΐ࣡ཷူ .ތٮ႕ڟؘᆂ௕࡮ϢڀDiabolepis)ອ࠭, ल) .ဨᄆຂԅ٫࠭࿈໿ᅱڦࠋ౭஍҉ݧสဟලྡྷഃ଼ಾڑ࠭ΐકઝЇ. Ҝ඘ࣄสဟગ঴౑ Ṻᑏ儐剐(Guiyu oneiros)[1]থ⦄Ѣѥफᖫ⬭㑾㔫 㓽ᇣ. 䖭ѯসҷ剐㉏ݐ݋⹀偼剐㉏੠݊Ҫ᳝习㉏ⱘ ᖋ⋯ϪഄሖЁ, Ў៥Ӏᦤկњ᥶㋶㙝务剐㉏䡈߿⡍ ᶤѯ⡍ᕕ, Ўⷨお䖭ѯ⡍ᕕⱘᵕ৥Ϣⓨ࣪ᦤկњ䞡 ᕕⓨ࣪乎ᑣⱘ䞡㽕㒓㋶[2], ݊ℷൟᷛᴀЎᏆⶹ᳔স㗕 㽕䆕᥂[15~17]. ሑㅵབℸ, ⬅Ѣ⹀偼剐㒆ⱘᮽᳳ⾡㉏ ⱘ䖥Тᅠᭈⱘ⹀偼剐㉏࣪⷇. ϔӊབℸᅠᭈⱘ⹀偼 ໻໮ֱᄬϡܼ, ϡᇥሲ⾡ᇮ᳾ᓔሩ⏅ܹⱘ↨䕗㾷ࠪ 剐㉏࣪⷇೼ᖫ⬭㋏Ё㹿থ⦄ᰃߎҎᛣ᭭ⱘ, ಴Ўℸ ᄺⷨお, ᠔ҹ⹀偼剐㉏ⱘ䍋⑤Ϣᮽᳳⓨ࣪ҡ⭥⚍䞡 ࠡᖫ⬭㑾⹀偼剐㉏࣪⷇䆄ᔩ䛑ᴹ㞾Ѣϔѯ䳊ᬷ࣪⷇, 䞡. བ劲⠛੠⠭啓[3~10]. 儐剐ᅠᭈᷛᴀⱘথ⦄䖬䆕ᅲњℸ Пࠡⱘⷨお᡹ਞҙᇍṺᑏ儐剐ⱘ䞡㽕⡍ᕕ㒘ড় ࠡḍ᥂䳊ᬷ偼⠛ᇍ᭥劲剐ⱘ໡ॳ[11]. 䖯㸠њㅔ㽕ᦣ䗄, ㋏㒳থ㚆ߚᵤᰒ⼎儐剐ǃ᭥劲剐੠ 䭓ᳳҹᴹ, 㙝务剐㉏Ϣ䕤务剐㉏П䯈, ҹঞ⹀偼 ᮴ᄨ剐݅ৠᵘ៤ϔϾᇮ᳾ੑৡⱘऩ㋏㉏㕸ü儐剐ᬃ 剐㉏Ϣ݊Ҫ᳝习㉏П䯈ഛᄬ೼ⴔᎼ໻ⱘᔶᗕᄺ吓≳. ㋏[1]. ᴀ᭛ᇚḍ᥂ϔѯᮄׂ⧚ⱘߚᬷֱᄬⱘᷛᴀ(ࣙ 䖛এ 10 ᑈ, 䖭ѯ吓≳⬅Ѣϔ㋏߫䇌བ᭥劲剐ǃ㟠劲 ᣀϔѯПࠡ᡹ᇐ䖛ⱘᷛᴀ)ᇍ儐剐ⱘ㛥乙ᔶᗕ䖯㸠䆺 剐(Ligulalepis)੠Dialipinaⱘ࣪⷇ᮄথ⦄[11~14]㗠ᕫҹ 㒚ᦣ䗄, ᑊ佪⃵೼儐剐ᬃ㋏Ёᘶ໡њ乙乊ⱘ㝰䋼偼 ᓩ⫼Ḑᓣ: Qiao T, Zhu M. Cranial morphology of the Silurian sarcopterygian Guiyu oneiros (Gnathostomata: Osteichthyes). Sci China Earth Sci, 2010, doi: 10.1007/s11430-010-4089-6 Шཹㄝ: ᖫ⬭㑾㙝务剐㉏Ṻᑏ儐剐(Guiyu oneiros)ⱘ㛥乙ᔶᗕ ൟᓣ. ᴀ᭛䆄䗄ⱘ᠔᳝ᷛᴀഛᴹ㞾ѥफⳕ᳆䴪Ꮦᖫ (Glyptolepis)੠ܼ㼊剐(Holoptychius)[22])Ё, 㛥乙ৢ䚼 ⬭㑾㔫ᖋ⋯Ϫᰮᳳ݇ᑩ㒘ⱘ⊹䋼♄ችЁ[1]. ḍ᥂儐剐 ๲䭓, ᇐ㟈乊⬆੠ৢ乊⬆䭓ᑺ↨ഛᇣѢ 1.0. 㗠೼݊ .ᦤկⱘᮄֵᙃ, ៥Ӏ䖬ᇚ䅼䆎ⴊࠡ偼੠⊾偼೼䕤务 Ҫᮽᳳ㙝务剐㉏(བ᭥劲剐)Ё, 乊⬆ഛ↨ৢ乊⬆䭓 剐㉏੠㙝务剐㉏Ёⱘৠ⑤݇㋏. ᴀ᭛䞛⫼Westoll[18] 䕗儐剐᳈ॳྟⱘᓹ᳐剐(Meemannia)[23]੠ᮽᳳ䕤务剐 ⱘᴃ䇁㋏㒳, ҙᰃЎњ੠Ⳃࠡ໻໮᭄᭛ゴЁⱘ⫼⊩ ㉏[24]ৠḋ݋᳝Ⳍᇍ䕗䭓ⱘ㛥乙ࠡ䚼. ಴ℸ, ៥Ӏ䅸Ў ϔ㟈. 儐剐᥹䖥ㄝ䭓ⱘ乊⬆੠ৢ乊⬆ৃ㛑ᰃϔ⾡䕗䖯ℹⱘ ⢊ᗕ. 1 㚵㔎㶃⹨峡 乊⬆䭓ᆑ໻㟈Ⳍৠ, ᑊ೼ⴊৢさ(postorbital corner)໘䖒ࠄ᳔ᆑ. ৢ乊⬆৥ৢবᆑ, ೼Ϟ乲偼 1.1 㔎Ⰶジ⭥〚⡟㲹䎘 (supratemporal)੠ᵓ偼(tabular)偼㓱໘䖒ࠄ᳔ᆑ, ৥ ೼ℷൟᷛᴀ(IVPP V15541)Ϟ, 乙乊⬆ֱᄬᅠᭈ, ৢজ䗤⏤বじ. ৢ乊⬆ৢ㓬䖥ѢᑇⳈ, Ё䯈⬹৥ৢさ 乊⬆੠ৢ乊⬆㹿乙䯈݇㡖ߚᓔ, ᘏ䭓㑺 4.5 cm(೒ ߎ. 1(a)). ⬅ѢফࠄϞϟ᣸य़, 㗠Ϩਏッ৥ϟᔃ᳆, ℷൟ 儐剐乙乊偼⠛᭄Ⳃ䕗ᇥ, 䖭ৃ㛑ᰃॳྟ㙝务剐 ᷛᴀϞⱘ乊⬆↨䳊ᬷᷛᴀ(೒ 2 ੠ 3)ᰒⷁᆑ. 䳊ᬷᷛ ㉏ⱘ⡍ᕕ. 㝰䋼偼㸼䴶㹿⹀劲䋼(ganoine)ᔶ៤ⱘϡ㾘 ᴀЁ, 乊⬆䭓 1.9~2.0 cm. ℷൟᷛᴀϞ乊⬆੠ৢ乊⬆ ߭㷩㰿⢊㉫ፈ(೒ 1, 2, 4(a), 4(b)੠ 5(a))㽚Ⲫ. ⹀劲䋼 䭓ᑺ↨㑺Ў 1.0, 䆹↨ؐ䕗᭥劲剐ⱘ(1.6~1.7)⬹ᇣ[19]. ᰃ㝰䋼偼㸼䴶ⱘ㽚Ⲫሖ, ⬅ऩሖ៪໮ሖ䞝䋼㒘៤, ᰃ ೼⟾啓剐㉏ [20,21]੠䖯ℹⱘᄨ劲剐㉏(՟བ䲩劲剐 Ԣㄝ䕤务剐㉏ⱘ⡍ᕕ[14,24,26~29]. ✊㗠, Ϣ⹀劲䋼ⳌԐ (a) (b) mR Pmx ano lR pno Pro Na1 So Na2 ioc Dsph Pr pi Pa soc It lc St Ppa Ta Eta Et mpl ppl 5 mm ೒ 1 Ṻᑏ儐剐(Guiyu oneiros Zhu et al., 2009) (a) ༈䚼ᬒ໻೒, 㚠㾚, ℷൟᷛᴀ V15541. (b) ḍ᥂᠔᳝ᴤ᭭ᕫߎⱘ乙乊⬆໡ॳ. ano, ࠡ໪唏ᄨ; Dsph, 㝰䋼㵊㘇偼; Et, ໪乲偼; Eta, 䰘໪乲 偼; It, 䯈乲偼; ioc, ⴊϟᛳ㾝ㅵ; lc, Џջ㒓ㅵ; lR, ջਏ偼; mpl, Ёߍ㒓; mR, Ёਏ偼; Na1, 唏偼 1; Na2, 唏偼 2; Pmx, ࠡϞ习偼; Pa, 乊偼; pi, ᵒᵰᄨ; pno, ৢ໪唏ᄨ; Ppa, ৢ乊偼; ppl, ৢߍ㒓; Pr, ৢਏ偼; Pro, ⴊࠡ偼; So, ⴊϞ偼; soc, ⴊϞᛳ㾝ㅵ; St, Ϟ乲偼; Ta, ᵓ偼 1192 Ё೑⾥ᄺ: ഄ⧗⾥ᄺ 2010 ᑈ ㄀ 40 ो ㄀ 9 ᳳ ⱘ㒧ᵘ೼Ậ剐㉏੠㙝务剐㉏Ёг᳝থ⦄, 䇈ᯢ⹀劲 劲剐ⱘ䖥M ᔶ ( ೒ 4(d)) П䯈. ࠡϞ习偼(Pmx, 䋼ৃ㛑ᰃ⹀偼剐㉏ݴ㕸ⱘ⼪ᕕ[30]. Schultze[8]ᣛߎ䕤 premaxillary; ೒ 4(a), 4(b), 6 ੠ 7(a)~(c))೼Ёਏ偼 务剐㉏Ё݌ൟⱘ⹀劲䋼੠㙝务剐㉏ᭈ߫ሖЁⱘ䞝䋼 (median rostral ϟᮍЁ㒓Ⳍ᥹, ᑊᇚЁਏ偼ᥦ䰸೼Ϟ ϡৠ, ࠡ㗙㸼䴶᳝ߌ䍋៪ᇣ⯸⚍(microtubercles), ৢ 习䖍㓬П໪, Ϣᮽᳳ䕤务剐㉏[24] ǃᴼ⇣剐[32] ǃ 㗙㸼䴶߭ᰒ⬅Ⳍ䚏㒚㚲䖍⬠᠔ᔶ៤ⱘ݁䖍ᔶߍഥ. Powichthys[33,34]੠݊Ҫ㙝务剐㉏ݴ㕸ⳌԐ. ࠡϞ习偼 Ԛ䖭ѯᏂᓖᑊϡ៾✊, ಴Ўϔѯ䕤务剐㉏( བ ਜᏺ⢊, 催ᑺ৥ৢջᮍ䗦๲, Ⳉࠄջਏ偼(lateral Cheirolepis trailli[30])ⱘ⹀劲䋼гϡ݋໛ᇣ⯸⚍㒧ᵘ. rostral)੠ⴊࠡ偼(preorbital)ⱘ偼㓱, ৥ৢজ䗤⏤বԢ, 儐剐ⱘ⹀劲䋼㸼䴶੠݊Ҫ㙝务剐㉏෎ᑆ㉏ൟ[11,13,19,23,31] Ⳉࠄⴊࠡ偼Пϟ. 䖭ᰃ੠᭥劲剐ⱘϔϾ䞡㽕Ꮒᓖ: ೼ ⱘ䞝䋼㸼䴶ᰃ৺݋᳝ᇣ⯸⚍㒧ᵘ䖬᳝ᕙѢ䖯ϔℹ㾖 ᭥劲剐Ё, ࠡϞ习偼催ᑺ৥ৢջᮍϔⳈ䗦๲, ᑊᔶ៤ ᆳ. ⴊࠡさ(pr. Pro, preorbital process; ೒ 4(d))ࣙೈৢ໪ 唏ᄨৢ㓬. Ϣ᭥劲剐੠⟾啓剐ⳌԐ, ࠡϞ习偼݋᳝ϸ 1.2 㚵㔎㣑⤠㚅䐫⹨ ⾡ϡৠ㉏ൟⱘ⠭啓. ࠡϞ习偼㝍㓬݋ϔᥦ䕗໻ⱘ䫹 㱑✊ℷൟᷛᴀϞⳟϡࠄ偼㓱(೒ 1(a)), Ԛ೼䳊ᬷ ᔶ⠭啓, ⠭啓໻ᇣ೼ϡৠ䚼ԡ᳝Ꮒᓖ, ᭈԧϞ↨᭥劲 ⱘ乊⬆ᷛᴀ(೒ 2, 3)Ϟৃҹ⏙Ἦഄ㾖ᆳࠄ偼㓱੠偼⠛ 剐੠᮴ᄨ剐Ёⱘ᳈㑸㒚. ࠡϞ习偼ৢջ䚼ⱘ⠭啓 ⱘ偼࣪Ёᖗ. ᥂ℸ៥Ӏ䞡ᓎњ儐剐乊⬆ⱘ㝰䋼偼ൟ (t.Pmx; ೒ 6(d))ḍ䚼῾៾䴶ਜじⱘἁ೚ᔶ, ᅗӀ↨䴴 ᓣ(೒ 1(b)). 䖥Ё㒓ⱘ⠭啓᳈䭓. ೼䖭ᥦ䕗໻⠭啓ⱘ㚠ջ, ϔᥦᇣ Ңࠡջⳟ, Ϟ习啓㓬Ё䯈ᯢᰒさߎ(೒ 4(a)੠ ⠭䭊ጠ೼ࠡϞ习偼㸼䴶㉫ፈ㒍佄ⱘ䖍㓬. 4(b)), 啓㓬䕂ᒧҟѢ᮴ᄨ剐ⱘ䖥ᑇⳈᔶ(೒ 4(c))੠᭥ Ёਏ偼(mR, ೒ 1(b), 3(a)~(e), 4(b)੠ 5(b))オ⨈⢊, ೒ 2 Ṻᑏ儐剐(Guiyu oneiros Zhu et al., 2009)✻⠛ (a)~(e) 㛥乙ࠡ䚼㚠㾚; (a) V15542.1; (b) V15542.17; (c) V15542.2; (d) V15542.3; (e) V15542.19. (f) 㛥乙ৢ䚼㚠㾚, V15542.6 1193 Шཹㄝ: ᖫ⬭㑾㙝务剐㉏Ṻᑏ儐剐(Guiyu oneiros)ⱘ㛥乙ᔶᗕ Pmx (a) (b) (c) mR lR mR ano mR lR Pmx pno lR Na1 Na1 Pro So Na1 So Pro Na2 Pro So Na2 So soc soc Pr Dsph Na2 Pr Dsph ioc Pr ioc Pr Dsph soc ioc pi pi Pa pi Pa Pa It It It 5 mm 5 mm 5 mm (d) (e) (f) mR Pmx lR Pmx mR Pro Na1 So soc St Na1 Na2 So Pro Pr Na2 Dsph ioc soc Ppa Ta Dsph pi ioc Pr mpl Pa It Pa ppl pi It 5 mm 5 mm 5 mm ೒ 3 Ṻᑏ儐剐(Guiyu oneiros Zhu et al., 2009)㒓ᴵ೒ (a)~(e) 㛥乙ࠡ䚼㚠㾚; (a) V15542.1; (b) V15542.17; (c) V15542.2; (d) V15542.3; (e) V15542.19. (f) 㛥乙ৢ䚼㚠㾚, V15542.6. 㓽⬹䆡㾕೒ 1 ৥ࠡᦦܹϸࠡϞ习偼П䯈, ऴ᥂㑺 1/4 ⱘ乊⬆䭓ᑺ. Ё㒓Ⳍ᥹, Ϣಯ䎇ࡼ⠽Ё剐⷇㵜(Ichthyostega)[43]੠ Ϣ᭥劲剐[19]੠᮴ᄨ剐[13]ϡৠ, Ёਏ偼ϡ݋ᇣ啓, ϡ Ậ㵜(Acanthostega)[44]ⱘᚙމϔ㟈. ೼݊Ҫॳྟ㙝务 খϢᵘ៤Ϟ习啓㓬. Ёਏ偼໪ջ৥ݙߍ, Ϣջਏ偼੠ 剐㉏Ё, 唏偼㒣ᐌ㹿ৢਏ偼ߚᓔ, ᠔ҹ儐剐੠ಯ䎇ࡼ 唏偼 1 Ⳍ᥹, ৢ㓬ᣅᔶ. ⠽ⱘ䖭ϔⳌԐᑨЎᑇ㸠䖯࣪. ջਏ偼(lR, ೒ 1(b), 3(a)~(e), 4(b)੠ 5(b))ϢࠡϞ ⴊϞ偼(So, supraorbital; ೒ 1(b), 3(a)~(e), 4(b)੠ 习偼Ⳍ᥹, ᑊҢ㝍ջࣙೈࠡ໪唏ᄨ(ano, anterior 5(b))ԡѢ唏偼໪ջ, ᔶ⢊ব࣪䕗໻, খϢᵘ៤ৢ໪唏 nostril; ೒ 1(b), 3(a)~(e), 4(b)੠ 5(b)). Ϣ᭥劲剐੠᮴ ᄨ(posterior nostril)ⱘ㚠㓬. ৢ໪唏ᄨᓔষ৥ࠡ㚠ջ, ᄨ剐Ⳍৠ, ࠡ໪唏ᄨ䕗໻, ॉ೚ᔶ, ԡѢ乊⬆㚠ջ. ೼ℷൟᷛᴀϞֱᄬϡᅠᭈ(೒ 1(a)), Ԛ೼䳊ᬷᷛᴀϞ 儐剐㔎༅㝰䋼䯈さ(dermintermedial process), 䖭Ϣ⟾ ৃҹҢ乙乊ⳟࠄৢ໪唏ᄨ(pno, ೒ 1, 2(a)~(e), 啓剐[20]ǃ㵊᷅剐(Styloichthys [35]ǃᄨ劲剐㉏[22,36]੠䕤 3(a)~(e), 4(b)੠ 5), ԡ㕂↨݊Ҫᮽᳳ㙝务剐㉏᳈䴴㚠 务剐㉏[24] ⳌԐ. 㝰䋼䯈さ೼ಯ䎇ᔶࡼ⠽(Tetrapo- ջ. domorpha)[37,38]੠ϔѯॳྟ㙝务剐㉏(՟བ᭥劲剐[19]ǃ ೼㛥乙ջ䴶, ࠡϞ习偼㚠ջ᳝ϔϝ㾦ᔶ偼⠛, ៥ ᮴ᄨ剐[13] ǃᴼ⇣剐[32] ǃ༛ᓖ剐[39-41] ੠ Powich- Ӏ䡈ᅮЎⴊࠡ偼(Pro, ೒ 1(b), 3(a)~(e), 4(b)੠ 5(b)). thys[33,34,42])Ёᄬ೼. ⴊࠡ偼㚠ջϢջਏ偼੠ⴊϞ偼Ⳍ᥹, ᑊࣙೈৢ໪唏 ϸᇍ唏偼(nasal 1 ੠nasal 2)ԡѢࠡ໪唏ᄨЁৢջ. ᄨ. ⴊࠡ偼ⱘৠ⑤݇㋏ᇚ೼ৢ᭛Ё䅼䆎. 唏偼 1 Ϣջਏ偼໻ᇣⳌԐ, ᵘ៤ࠡ໪唏ᄨⱘ㚠㓬. ⴊ ৢਏ偼(Pr, postrostral; ೒ 1(b)੠ 3(a)~(e))ԡѢ唏 Ϟᛳ㾝ㅵ(soc, supraorbital canal; ೒ 1(b), 3(a)~(e), 偼ৢջ, Ў໮䖍ᔶ偼⠛. ৢਏ偼ⱘ᭄Ⳃ੠ᔶ⢊೼ϡৠ 5(b))こ䖛唏偼 2, Ԛ偼⠛Ϟⱘ⹀劲ፈ䖲㓁. 唏偼 2 ೼ ᷛᴀϞ᳝ᕜ໻ব࣪. ೼ᷛᴀ V15542.1(೒ 2(a)੠ 3(a)) 1194 Ё೑⾥ᄺ: ഄ⧗⾥ᄺ 2010 ᑈ ㄀ 40 ो ㄀ 9 ᳳ Na1 Na2 mR ano (a) (b) lR Dsph So pno Pro 5 mm Pmx (c) (d) ano ano pno pr.Pro pno Pmx Pmx ೒ 4 㛥乙ࠡ䚼ࠡ㾚 (a), (b) Ṻᑏ儐剐, ✻⠛(a)੠㋴ᦣ(b), V15542.1; (c) ᮴ᄨ剐, 㾕᭛⤂[25]; (d) ᭥劲剐, 㾕᭛⤂[19]. pr. Pro, ࠡϞ习偼ⴊࠡさ. ݊Ҫ㓽⬹䆡㾕೒ 1 Ϟ, 㟇ᇥᄬ೼ϝϾৢਏ偼; ೼ᷛᴀ V15542.17(೒ 2(b) こ . ⴊϟᛳ㾝ㅵ(ioc, infraorbital canal; ೒ 1(b)੠ ੠ 3(b)) Ϟ , া᳝ϔϾᇣⱘৢਏ偼; ೼ᷛᴀ 3(a)~(e))ৃ㛑੠ⴊϞㅵ೼ਏ䚼⊓偼㓱Ⳍ䖲, Ϣᴼ⇣剐 V15542.2(೒ 2(c)੠ 3(c))Ϟ, ৢਏ偼㔎༅; ೼ᷛᴀ ⳌԐ. Ԛᰃ䖭⾡߸ᮁ䳔㽕 CT ᠿᦣ᭄᥂ⱘᬃᣕ. ⴊϞ V15542.3(೒ 2(d)੠ 3(d))Ϟ, ϔϾ䕗໻ⱘৢਏ偼ᦦܹ ㅵ೼Ёਏ偼ৢ㓬৥ϸջߚ⾏ᑊこ䖛唏偼 2 ੠乊偼, ೼ 唏偼 2 П䯈, ݊ࠡ㓬໻㑺Ϣⴊᄨ(om, orbital margin; 乊⬆ৢ㓬໘㒧ᴳ. Ϣ㵊᷅剐੠ᴼ⇣剐ϡৠ, ⴊϞㅵϡ ೒ 6)Ё㒓ԡѢৠϔ∈ᑇ; ೼ᷛᴀ V15542.19(೒ 2(e) ਜオ⨈⢊. ⴊϟㅵ੠Џջ㒓ㅵ(lc, main lateral-line ੠ 3(e))Ϟ, ಯϾᇣⱘৢਏ偼䭊ጠ೼唏偼 2 Пৢ. canal; ೒ 1(b)੠ 5(b))೼㝰䋼㵊㘇偼ⱘ偼࣪Ёᖗ໘Ⳍ 乊偼(Pa, parietal; ೒ 1(b), 3(a)~(e)੠ 5(b))䕗໻, 䖲. 乊⬆Ϟ᳾㾕ߍ㒓. ԡѢৢਏ偼੠唏偼Пৢ. 乊偼ࠡ㓬ࠄ䖒ⴊৢさ(ptoc, 1.3 㚵㔎⽔⤠㚅䐫⹨ ೒ 6(c)). ᵒᵰᄨ(pi, pineal foramen; ೒ 1(b)੠ 3(a)~(e)) 䕗ᇣ, ೚ᔶ, ԡѢⴊᄨПৢ, ᑊ㹿乊偼ᅠܼࣙೈ. ৢ乊⬆ⱘ䳊ᬷᷛᴀϞ(V15542.4~6, 21)ৃ㾕ϝᇍ 乊偼໪ջϢ㝰䋼㵊㘇偼(Dsph, dermosphenotic; 偼⠛(೒ 1, 2(f)੠ 3(f)): ৢ乊偼ǃϞ乲偼੠ᵓ偼. ৢ乊 ೒ 1(b), 3(a)~(e), 4(b)੠ 5(b))੠䯈乲偼(It, intertem- 偼(Ppa, postparietal; ೒ 1, 2(f)੠ 3(f))㒚䭓, ৢ㓬䕗ࠡ poral; ೒ 1(b), 3(a)~(e)੠ 5(b))Ⳍ᥹. 㝰䋼㵊㘇偼䕗໻, 㓬⬹ᆑ, ໪ջ೼Ϟ乲偼੠ᵓ偼䖲᥹໘৥໪さ. Ϣᓹ᳐ [23] [14] [12, 45] ᵘ៤ⴊᄨ㚠㓬. 䯈乲偼㒚䭓, ࠡ㓬বじϢ㝰䋼㵊㘇偼 剐 ǃDialipina ੠㟠劲剐 ⳌԐ, ৢ乊偼䖥Ё㒓 Ⳍ᥹. ໘ৃ㾕ϔᇍЁߍ㒓(mpl, middle pit-line; ೒ 1, 2(f)੠ 乊⬆Ϟᛳ㾝ㅵ㋏㒳ֱᄬ䴲ᐌᅠད. ⴊϞᛳ㾝ㅵ 3(f))੠ϔᇍৢߍ㒓(ppl, posterior pit-line; ೒ 1, 2(f)੠ ⇣ᭈԧ䕂ᒧਜֱ啘⧗⫊⢊. ⴊϞㅵࠡ䚼䴴䖥Ё㒓, ϢЁ 3(f)). Ёǃৢߍ㒓ԡ㕂䛑䕗䴴ৢ, 䖭Ϣ᭥劲剐ǃᴼ ਏ偼ջ㓬偼㓱䞡ড়. Ϣ᭥劲剐ǃ᮴ᄨ剐੠݊Ҫ㙝务剐 剐ǃPowichthys੠༛ᓖ剐[39]ⳌԐ, 㗠Ϣᄨ劲剐㉏[22]੠ ㉏ⳌԐ, ⴊϞㅵԡѢϸϾࠡ໪唏ᄨП䯈. ೼䕤务剐㉏ ⟾啓剐㉏[20,21]ϡৠ. ৢ乊偼Ϟ᳾㾕ⴊϞᛳ㾝ㅵ੠ࠡ Ё, ⴊϞㅵ䗮ᐌ೼ࠡᮍ໪ሩᑊҢࠡǃৢ໪唏ᄨП䯈䌃 ߍ㒓(anterior pit-line). ೼䕤务剐㉏Ё, ৢ乊偼Ϟৃ 1195 Шཹㄝ: ᖫ⬭㑾㙝务剐㉏Ṻᑏ儐剐(Guiyu oneiros)ⱘ㛥乙ᔶᗕ [24] 㾕ࠡߍ㒓 . (a) ৢ乊偼໪ջЎ䰘ⴔЏջ㒓ㅵⱘϞ乲偼(St; ೒ 1, 2(f)੠ 3(f))੠ᵓ偼(Ta; ೒ 1, 2(f)੠ 3(f))ࣙೈ. ᵓ偼Ϟ ≵᳝ߍ㒓, 䖭੠᭥劲剐[19]੠᮴ᄨ剐[13]ϔ㟈, Ϣᴼ⇣ 剐[32]ǃPowichthys[33,34]੠ᄨ劲剐㉏[22]ϡৠ.
Recommended publications
  • Osteichthyes: Sarcopterygii) Apex Predator from the Eifelian-Aged Dundee Formation of Ontario, Canada
    Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian-aged Dundee Formation of Ontario, Canada. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2016-0119.R3 Manuscript Type: Article Date Submitted by the Author: 04-Dec-2016 Complete List of Authors: Mann, Arjan; Carleton University, Earth Sciences; University of Toronto Faculty of ArtsDraft and Science, Earth Sciences Rudkin, David; Royal Ontario Museum Evans, David C.; Royal Ontario Museum, Natural History; University of Toronto, Ecology and Evolutionary Biology Laflamme, Marc; University of Toronto - Mississauga, Chemical and Physical Sciences Keyword: Sarcopterygii, Onychodontiformes, Body size, Middle Devonian, Eifelian https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences A large onychodontiform (Osteichthyes: Sarcopterygii) apex predator from the Eifelian- aged Dundee Formation of Ontario, Canada. Arjan Mann 1,2*, David Rudkin 1,2 , David C. Evans 2,3 , and Marc Laflamme 1 1, Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada, [email protected], [email protected] 2, Department of Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 3, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 *Corresponding author (e-mail: [email protected] ca). https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 34 Abstract The Devonian marine strata of southwestern Ontario, Canada have been well documented geologically, but their vertebrate fossils are poorly studied. Here we report a new onychodontiform (Osteichthyes, Sarcopterygii) Onychodus eriensis n.
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • Identifying Heterogeneity in Rates of Morphological Evolution: Discrete Character Change in the Evolution of Lungfish (Sarcopterygii; Dipnoi)
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01460.x IDENTIFYING HETEROGENEITY IN RATES OF MORPHOLOGICAL EVOLUTION: DISCRETE CHARACTER CHANGE IN THE EVOLUTION OF LUNGFISH (SARCOPTERYGII; DIPNOI) Graeme T. Lloyd,1,2 Steve C. Wang,3 and Stephen L. Brusatte4,5 1Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 2E-mail: [email protected] 3Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 5Department of Earth and Environmental Sciences, Columbia University, New York, New York 10025 Received February 9, 2010 Accepted August 15, 2011 Data Archived: Dryad: doi:10.5061/dryad.pg46f Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as “living fossils” due to an apparent slowdown in rates since the Devonian.
    [Show full text]
  • Reference Localities for Palaeontology and Geology in the Silurian of Gotland
    SVERIGES GEOLOGISKA UNDERSOKNING SER C NR 705 AVHANDLINGAR OCH UPPSATSER ÅRSBOK 68 NR 12 SVEN LAUFELD REFERENCE LOCALITIES FOR PALAEONTOLOGY AND GEOLOGY IN THE SILURIAN OF GOTLAND STOCKHOLM 1974 SVERIGES GEOLOGISKA UNDERSOKNING SER C NR 705 AVHANDLINGAR OCH UPPSATSER ÅRSBOK 68 NR 12 SVEN LAUFELD REFERENCE LOCALITIES FOR PALAEONTOLOGY AND GEOLOGY IN THE SILURIAN OF GOTLAND STOCKHOLM 1974 ISBN 91-7158-059-X Kartorna är godkända från sekretessynpunkt för spridning Rikets allmänna kartverk 1974-03-29 IU S UNES D l Project ECOSTRATIGRAPHY Laufeld, S.: Reference loca!ities for palaeontology and geology in the Silurian of Gotland. Sveriges Geologiska Undersökning, Ser. C, No. 705, pp. 1-172. Stock­ holm, 24th May, 1974. About 530 geologkal localities in the Silurian of the island of Gotland, Sweden, are described under code names in alphabetical order. Each locality is provided with a UTM grid reference and a detailed description with references to the topographical and geologkal map sheets. Information on reference points and levels are included for some localities. The stratigraphic position of each locality is stated. A bibliography is attached to several localities. Sven Laufeld, Department of Historical Geology and Palaeontology, Sölvegatan 13, S-223 62 Lund, Sweden, 4th March, 1974. 4 Contents Preface. By Anders Martinsson 5 Introduction 7 Directions for use lO Grid references 10 Churches 11 Detailed descriptions 11 Reference point and leve! 11 Stratigraphy 11 References 12 Indexes .. 12 Practical details 13 Descriptions of localities 14 References .. 145 Index by topographical maps 149 Index by geological maps 157 Index by stratigraphical order .. 165 5 Preface In 1968 a course was set for continued investigations of the Silurian of Gotland and Scania.
    [Show full text]
  • Paleontological Research
    Paleontological Research Vol. 6 No.3 September 2002 The Palaeontological Society 0 pan Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoshi Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D. K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 2001-2002 Honorary President: Tatsuro Matsumoto President: Hiromichi Hirano Councillors: Shuko Adachi, Kazutaka Amano, Yoshio Ando, Masatoshi Goto, Hiromichi Hirano, Yasuo Kondo, Noriyuki
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Spiracular Air Breathing in Polypterid Fishes and Its Implications for Aerial
    ARTICLE Received 1 May 2013 | Accepted 27 Nov 2013 | Published 23 Jan 2014 DOI: 10.1038/ncomms4022 Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods Jeffrey B. Graham1, Nicholas C. Wegner1,2, Lauren A. Miller1, Corey J. Jew1, N Chin Lai1,3, Rachel M. Berquist4, Lawrence R. Frank4 & John A. Long5,6 The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land. 1 Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. 2 Fisheries Resource Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California 92037, USA. 3 VA San Diego Healthcare System, San Diego, California 92161, USA.
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • The Big Picture Book
    BOOK PUBLISHERS Teachers Notes (Middle Years) by Dr John Long The Big Picture Book by Dr John Long, illustrated by Brian Choo ISBN 9781741143287 Recommended for ages 8-14 These notes may be reproduced free of charge for use and study within schools but they may not be reproduced (either in whole or in part) and offered for commercial sale. Introduction ............................................ 2 Science studies........................................ 2 Time........................................... 2 Astronomy .................................. 3 Geology ...................................... 3 Biology ....................................... 4 Science and the future .................. 6 Cultural studies ....................................... 6 Language................................................ 7 Meanings of some of the names featured in the book ........... 7 About the writer and illustrator .................. 7 Appendix: A ‘Bestiary’ of living things featured in the illustrations........................ 10 83 Alexander Street PO Box 8500 Crows Nest, Sydney St Leonards NSW 2065 NSW 1590 ph: (61 2) 8425 0100 [email protected] Allen & Unwin PTY LTD Australia Australia fax: (61 2) 9906 2218 www.allenandunwin.com ABN 79 003 994 278 INTRODUCTION This book was written to introduce to upper primary and lower secondary level children an outline of the three main themes that contribute towards our understanding of evolution: time, physical processes, and biological change. The book can be used to augment studies in general science (astronomy, geology, biology), but also to contribute to an understanding of the birth of human culture and to promote discussion of environmental issues confronting the world today. The writing is a simple, almost lyrical style to facilitate an easy level of reading, with pronunciation guide and glossary at the back of the book to help children say and understand the meaning of most of the technical words used in the text.
    [Show full text]
  • The Geology of Susquehanna County and Wayne County
    This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com Hi lH -:. I \:^<m. mm mm m ■H ^IVBKS^OFMICHJ^ GLE- SECOND GEOLOGICAL SURVEY OF PENNSYLVANIA: REPORT OF PROGRESS G5. H^ l0Jz THE GEOLOGY Susquehanna county WAYNE COUNTY. By I. C. WHITE. WITH A GEOLOGICALLY COLORED MAP, AND 58 SECTIONS. HARRISBURG: PUBLISHED BY THE BOARD OF COMMISSIONERS TOn THE SECOND GEOLOGICAL SURVEY. 1881. Entered, for the Commonwealth of Pennsylvania, in the year 1880, according to acts of Congress, By WILLIAM A. INGHAM, Secretary of the Board of Commissioners of Geological Survey, In the office of the Librarian of Congress, at Washington, D. C. Electrotyped and printed by LANE S. HART, State Printer, Harrisburg, Pa. BOARD OF COMMISSIONERS. His Excellency, HENRY M. HOYT, Governor, and ex-officio President of the Board, Harrisburg. Ario Pardee, ---------- Hazleton. William A. Ingham, ------- Philadelphia. Henry S. Eckert, -------- Reading. Henry McCormick, - - - Harrisburg. James Macfarlane, -------- Towanda. Charles A. Miner, - - ----- - Luzerne co. Joseph Willcox, -------- Philadelphia. Hon. Daniel J. Morrell, ------ Johnstown. Louis W. Hall, - - - - ----- Harrisburg. Samuel Q. Brown, - - - ----- Pleasantville. SECRETARY OF THE BOARD. William A. Ingham, ------- Philadelphia. STATE GEOLOGIST. Peter Lesley, ---------- Philadelphia. ASSISTANTS IN 1881. John F. Carll, geologist for the Oil regions ; address Pleasantville, Venango county, Pa. J. Sutton Wall, to report on the coal and collieries of the Monongahela re gion ; address Monongahela city, Pa. J. J. Stevenson, geologist for Bedford and Fulton counties ; address Union- town, Fayette county, Pa. W. G. Platt, geologist for Centre and Clearfield counties ; address 907 Wal nut street, Philadelphia.
    [Show full text]
  • A Lungfish Survivor of the End-Devonian Extinction and an Early Carboniferous Dipnoan
    1 A Lungfish survivor of the end-Devonian extinction and an Early Carboniferous dipnoan 2 radiation. 3 4 Tom J. Challands1*, Timothy R. Smithson,2 Jennifer A. Clack2, Carys E. Bennett3, John E. A. 5 Marshall4, Sarah M. Wallace-Johnson5, Henrietta Hill2 6 7 1School of Geosciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, 8 EH9 3FE, UK. email: [email protected]; tel: +44 (0) 131 650 4849 9 10 2University Museum of Zoology Cambridge, Downing Street, Cambridge CB2 3EJ, UK. 11 12 3Department of Geology, University of Leicester, Leicester LE1 7RH, UK. 13 14 4School of Ocean & Earth Science, University of Southampton, National Oceanography Centre, 15 European Way, University Road, Southampton, SO14 3ZH , UK. 16 17 5Sedgwick Museum, Department of Earth Sciences, University of Cambridge, Downing St., 18 Cambridge CB2 3EQ, UK 1 19 Abstract 20 21 Until recently the immediate aftermath of the Hangenberg event of the Famennian Stage (Upper 22 Devonian) was considered to have decimated sarcopterygian groups, including lungfish, with only 23 two taxa, Occludus romeri and Sagenodus spp., being unequivocally recorded from rocks of 24 Tournaisian age (Mississippian, Early Carboniferous). Recent discoveries of numerous 25 morphologically diverse lungfish tooth plates from southern Scotland and northern England indicate 26 that at least ten dipnoan taxa existed during the earliest Carboniferous. Of these taxa, only two, 27 Xylognathus and Ballgadus, preserve cranial and post-cranial skeletal elements that are yet to be 28 described. Here we present a description of the skull of a new genus and species of lungfish, 29 Limanichthys fraseri gen.
    [Show full text]
  • I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
    Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2.
    [Show full text]