Current Status of the Plains Pocket Mouse, Perognathus Flavescens, in Iowa
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Perognathus Flavescens) in Eastern Nebraska
Western North American Naturalist Volume 72 Number 4 Article 11 2-8-2013 Current status of the plains pocket mouse (Perognathus flavescens) in eastern Nebraska Keith Geluso University of Nebraska, Kearney, NE, [email protected] Greg D. Wright University of Nebraska, Kearney, NE, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Geluso, Keith and Wright, Greg D. (2013) "Current status of the plains pocket mouse (Perognathus flavescens) in eastern Nebraska," Western North American Naturalist: Vol. 72 : No. 4 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol72/iss4/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 72(4), © 2012, pp. 554–562 CURRENT STATUS OF THE PLAINS POCKET MOUSE (PEROGNATHUS FLAVESCENS) IN EASTERN NEBRASKA Keith Geluso1,3 and Greg D. Wright1,2 ABSTRACT.—Distribution of the plains pocket mouse (Perognathus flavescens) overlaps tallgrass prairies in northeastern parts of the species’ range in the central United States. Distribution and abundance of the plains pocket mouse appears negatively impacted by agricultural practices during the last century due to the scarcity of records throughout the region. In eastern Nebraska, few plains pocket mice have been captured and no published account exists in recent decades. -
Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F. -
Paleontological Resources of the Upper and Middle San Pedro Valley
Paleontological Resources of the Upper and Middle San Pedro Valley Robert D. McCord Arizona Museum of Natural History Geological setting Regional extension causing block faulting – creation of the Basin and Range ~15Ma Poorly developed drainage results in lakes in valley bottom ?-3.4 Ma Drainage develops with flow to north, marshes, ponds and lakes significant from time to time Early Pleistocene Saint David Formation ? – 3.4 million lakes, few fossils Well developed paleomagnetic timeframe – a first for terrestrial sediments! Succession of faunas from ~3 to 1.5 Ma Blancan to ? Irvingtonian NALMA Plants diatoms charophytes Equisetum (scouring rush) Ostracoda (aquatic crustaceans) Cypridopsis cf. vidua Limnocythere cf. staplini Limnocythere sp. Candona cf. renoensis Candona sp. A Candona sp. B ?Candonlella sp. ?Heterocypris sp. ?Cycloypris sp. Potamocypris sp. Cyprideis sp. Darwinula sp. Snails and a Clam Pisidium casertanum (clam) Fossaria dalli (aquatic snail) Lymnaea caperata (aquatic snail) Lymnaea cf. elodes (aquatic snail) Bakerilymnaea bulimoides (aquatic snail) Gyraulus parvus (aquatic snail) Promenetus exacuous (aquatic snail) Promenetus umbilicatellus (aquatic snail) Physa virgata (aquatic snail) Gastrocopta cristata (terrestrial snail) Gastrocopta tappaniana (terrestrial snail) Pupoides albilabris (terrestrial snail) Vertigo milium (terrestrial snail) Vertigo ovata (terrestrial snail) cf. Succinea (terrestrial snail) Deroceras aenigma (slug) Hawaila minuscula (terrestrial snail) Fish and Amphibians indeterminate small fish Ambystoma tigrinum (tiger salamander) Scaphiopus hammondi (spadefoot toad) Bufo alvarius (toad) Hyla eximia (tree frog) Rana sp. (leopard frog) Turtles and Lizards Kinosternon arizonense (mud turtle) Terrapene cf. ornata (box turtle) Gopherus sp. (tortoise) Hesperotestudo sp. (giant tortoise) Eumeces sp. (skink) “Cnemidophorus” sp. (whiptail lizard) Crotaphytus sp. (collared lizard) Phrynosoma sp. (horned lizard) Sceloporus sp. -
Hispid Pocket Mouse Chaetodipus Hispidus
Wyoming Species Account Hispid Pocket Mouse Chaetodipus hispidus REGULATORY STATUS USFWS: No special status USFS R2: No special status USFS R4: No special status Wyoming BLM: No special status State of Wyoming: Nongame Wildlife CONSERVATION RANKS USFWS: No special status WGFD: NSSU (U), Tier III WYNDD: G5, S1S3 Wyoming Contribution: LOW IUCN: Least Concern STATUS AND RANK COMMENTS The Wyoming Natural Diversity Database has assigned Hispid Pocket Mouse (Chaetodipus hispidus) a state conservation rank ranging from S1 (Critically Imperiled) to S3 (Vulnerable) because of uncertainty about the proportion of range occupied and population trends for this species in Wyoming. NATURAL HISTORY Taxonomy: Historically, there were four recognized subspecies of Hispid Pocket Mouse, and only C. h. paradoxus was found in Wyoming 1-5. A recent DNA-based study determined that the previously accepted subspecies are neither morphologically nor genetically distinct and instead proposed new subspecies boundaries delineated by four geographically and ecologically disjunct mitochondrial clades 6. Following this taxonomic revision, Wyoming remains within the distribution of the newly defined subspecies C. h. paradoxus 6. Description: It is possible to identify Hispid Pocket Mouse in the field. It is the largest Wyoming pocket mouse species; adults weigh between 40–60 g and can reach total lengths of 200–223 mm 2. Tail, hind foot, and ear length ranges from 90–113 mm, 25–28 mm, and 12–13 mm, respectively 2. Hispid Pocket Mouse is named for its distinctly coarse dorsal pelage, which is buff to yellowish orange mixed with black hairs, thus leading to an overall brownish or even olive appearance 1, 2, 4, 5, 7. -
Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments
National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR–2009/278 ON THE COVER: Top: Wupatki National Monument; bottom left: bobcat (Lynx rufus); bottom right: Wupatki pocket mouse (Perogna- thus amplus cineris) at Wupatki National Monument. Photos courtesy of U.S. Geological Survey/Charles Drost. Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR—2009/278 Author Charles Drost U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Editing and Design Jean Palumbo National Park Service, Southern Colorado Plateau Network Northern Arizona University Flagstaff, Arizona December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Breeding Biology and Diet of the Ferruginous Hawk in South Dakota
Wilson Bull., 94(l), 1982, pp. 4654 BREEDING BIOLOGY AND DIET OF THE FERRUGINOUS HAWK IN SOUTH DAKOTA CHARLES L. BLAIR AND FRANK SCHITOSKEY, JR. The Ferruginous Hawk (Buteo regalis) is the largest North American buteo. It occurs throughout most of the western United States and breeds from Alberta to western Texas and from Washington to Arizona. In this study we investigated the breeding biology of the Ferruginous Hawks in northwest South Dakota, complimenting earlier studies by Weston (1969) in Utah, Olendorff (1973) in Colorado, Howard (1975) in Utah and Idaho, and Lokemoen and Duebbert (1976) in north-central South Dakota. STUDY AREA AND METHODS The study area encompassed about 7000 km ’ in northwest South Dakota, including all of Harding County. The area is semi-arid and has a mid-continental climate with long, cold winters and short, warm summers (Spuhler et al. 1971). Eighty-five percent of Harding County is rangeland dominated by western wheatgrass (Agropyron smithii) and needle grass (Stipa comata). Sagebrush (Artemesia spp.) occurs throughout the area and is widespread in the western third of the county. Small grain crops compose 9% of the area, pastureland and tame hay 3% and woodland 3%. Elevated table lands are dominated by ponderosa pine (Pinw ponderma) Savannah, whereas green ash (Fraxinus pennsylvanicas), willow (S&x spp.) and Siberian elm (Ulmas pumila) predominate in riparian areas and ravines. Two or more biologists conducted a daily census of birds on the study area in 1976 and 1977; Ferruginous Hawk studies began the day the first hawk was sighted. Active nests were located either during aerial surveys at altitudes of 150-175 m, or by ground searches from roads. -
The Setaria Viridis Genome and Diversity Panel Enables Discovery of a Novel
bioRxiv preprint doi: https://doi.org/10.1101/744557; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: The Setaria viridis genome and diversity panel enables discovery of a novel domestication gene Authors: Pu Huang1,5, Sujan Mamidi2, Adam Healey2, Jane Grimwood2, Jerry Jenkins2, Kerrie Barry3, Avinash Sreedasyam2, Shengqiang Shu3, Maximilian Feldman1,6, Jinxia Wu1,7, Yunqing Yu1, Cindy Chen3, Jenifer Johnson3, Hitoshi Sakakibara4,8, Takatoshi Kiba4,9, Tetsuya Sakurai4,9, Daniel Rokhsar3, Ivan Baxter1, Jeremy Schmutz2,3, Thomas P. Brutnell1,7, Elizabeth A. Kellogg1,* 1 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA 2 HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA 3 Department of Energy Joint Genome Institute, Walnut Creek, California, USA 4 RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan 5 present address: BASF Corporation, 26 Davis Dr., Durham, NC 27709, USA 6 present address: USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 24106 N. Bunn Rd., Prosser, WA 99350, USA 7 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China 8 present address: Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan 1 bioRxiv preprint doi: https://doi.org/10.1101/744557; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
31295002021987.Pdf (16.44Mb)
POPULATION DYNAMICS OF RODENTS OF THE MESQUITE PLAINS-HIGH PLAINS ECOTONE by DANIEL ROBERT WOMOCHEL, B.S. A THESIS IN ZOOLOGY Submitted to the Graduate Faculty of Texas Technological College in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted June, 1968 I' % nc. 7T ACKNOWLEDGMENTS I am grateful to Dr. Robert L. Packard for his di rection of my research and preparation of this thesis, and to my parents and grandmother for their encouragement and assistance. Thanks also are due Mr. Allan Wallace, vjho kindly permitted me to conduct this study on his ranch. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES iv LIST OP ILLUSTRATIONS vi CHAPTER I. INTRODUCTION 1 II. DESCRIPTION OF THE AREA 3 III. METHODS AND MATERIALS 12 IV. SPECIES ACCOUNTS l6 Sigmodon hispidus l6 Perognathus flavus 33 "Perognathus hispidus 47 Reithrodontomys montanus 59 Peromyscus maniculatus 64 Dipodomys ordii 65 Peromyscus leucopus 65 Citellus spilosoma 66 V. POPULATION RELATIONSHIPS 67 VI. SUMI4ARY AND CONCLUSIONS 73 LITERATURE CITED 77 iii LIST OF TABLES TABLE Page 1. Plants of the Study Area 10 2. Density of Cotton Rats Based on Average Num ber Trapped Per Acre 17 3. Population Density of Cotton Rats Based on the Lincoln Index l8 h. Monthly Distribution of Immature and Re- productively Active Nonresident Males and Females 21 5. Monthly Distribution of Immature and Re- productively Active Resident Males and Females 22 6. Home Ranges of Adult Male Cotton Rats ... 26 7. Home Ranges of Adult Female Cotton Rats ... 27 8. Average Home Ranges of All Cotton Rats .. -
Foxtail Millet (Setaria Italica), Grain | Feedipedia
Foxtail millet (Setaria italica), grain | Feedipedia Animal feed resources Feedipedia information system Home About Feedipedia Team Partners Get involved Contact us Foxtail millet (Setaria italica), grain Automatic translation Description Nutritional aspects Nutritional tables References Sélectionner une langue ▼ Click on the "Nutritional aspects" tab for recommendations for ruminants, pigs, poultry, rabbits, horses, fish and crustaceans Feed categories All feeds Forage plants Cereal and grass forages Legume forages Forage trees Aquatic plants Common names Other forage plants Plant products/by-products Foxtail millet, dwarf setaria, foxtail bristle grass, German millet, giant setaria, green bristle grass, green foxtail, green foxtail Cereal grains and by-products millet, Hungarian millet, Italian millet, wild foxtail millet, nunbank setaria [English]; mijo, mijo de Italia, mijo menor, moha, moha Legume seeds and by-products de Alemania, moha de Hungria, panizo común, almorejo [Spanish]; painço, milho painço, milho painço de Itália [Portuguese]; Oil plants and by-products millet d'Italie, millet des oiseaux, petit mil, sétaire verte, sétaire d'Italie [French]; Kolbenhirse, Italienische Borstenhirse ذيل الثعلب اإيطالي ;[Fruits and by-products [German]; jawawut, sekoi [Indonesian]; setária-verde [Italian]; juwawut, otèk [Javanese]; setariya [Kinyarwanda Roots, tubers and by-products [Arabic]; 粟 [Chinese]; 조 [Korean]; [Hindi]; アワ [Japanese]; [Kannada]; [Malayalam]; Sugar processing by-products [Nepali]; Щети́ нник италья́нский [Russian]; [Tamil]; [Telugu]; ขาวฟ้ ่ างหางหมา [Thai] Plant oils and fats Other plant by-products Species Feeds of animal origin Animal by-products Setaria italica (L.) P. Beauv. [Poaceae] Dairy products/by-products Animal fats and oils Synonyms Insects Other feeds Chaetochloa italica (L.) Scribn., Chaetochloa viridis (L.) Scribn., Chamaeraphis viridis (L.) Millsp., Panicum italicum L., Minerals Panicum pachystachys Franch. -
Watchable Wildlife Form
U.S. Fish & Wildlife Service Watchable Wildlife Bitter Lake National Wildlife Refuge Welcome Roundnose minnow Dionda episcopa Amphibians Bitter Lake National Wildlife Refuge is one Speckled chub Extrarius aestivalis Family Ambystomatidae – Mole Salamanders of New Mexico’s most important sanctuaries Plains minnow Hybognathus placitus Tiger salamander Ambystoma tigrinum Arkansas River shiner Notropis girardi and breeding grounds for migratory birds and Family Leptodactylidae – Tropical Frogs Rio Grande shiner Notropis jemezanus other wildlife. Established in 1937, the 24,500- Eastern barking frog Eleutherodactylus augusti Pecos bluntnose shiner Notropis simus pecosensis acre refuge is strategically located along the latrans Pecos River where the Chihuahuan Desert Fathead minnow Pimephales promelas Family Pelobatidae – Spadefoot Toads meets the Great Plains. The convergence of Family Catostomidae – Suckers Couch’s spadefoot toad Scaphiopus couchii these vastly different terrains has produced a River carpsucker Carpoides carpio diverse range of habitats, providing a home to New Mexico spadefoot toad Spea multiplicata a rich array of plant and animal life, including Family Ictaluridae – Catfishes Plains spadefoot toad Spea bombifrons Channel catfish Ictalurus punctatus a number of rare species. Family Bufonidae – Toads Bitter Lake NWR is best known for its Family Cyprinodontidae – Pupfish Woodhouse’s toad Bufo woodhousii spectacular variety of birds, particularly the Pecos pupfish Cyprinodon pecosensis Red-spotted toad Bufo punctatus Great Plains toad Bufo cognatus large migrations of ducks, geese, and cranes Family Fundulidae – Killifishes Texas toad Bufo speciosus during the fall and winter months. Many of Plains killifish Fundulus zebrinus Western green toad Bufo debilis insidior these creatures are drawn by the refuge’s Rainwater killifish Lucania parva wetlands, which offer an abundance of food as Family Hylidae – Treefrogs Family Poeciliidae – Livebearers well as ideal nesting habitat for some species. -
Kangaroo Rat and Pocket Mouse
Shrew Family Order Rodentia (Soricoidae) masked shrew vagrant shrew water shrew Sorex cinereus Sorex vagrans Sorex palustris grassland streambank streambank Mouse, Vole, Rats, and Muskrat (Cricetidae) meadow vole long-tailed vole heather vole Microtus pennsylvanicu Microtus longicaudus Phenacomys intermedius grassland streambank streambank/grassland/mountain Gapper’s red-backed vole deer mouse Western harvest mouse Clethrionomys gapperi Peromycus maniculatus Reithrodontomys megalotis mountain mountain/streambank grassland bushy-tailed woodrat Neotoma cinerea mountain rock mouse Northern grasshopper mouse Peromyscus difficilis Onychomys leucogaster mountain grassland Jumping Mouse Kangaroo Rat and Family Pocket Mouse silky pocket mouse (Zapodidae) (Heteromyidae) Perognathus flavus desert Western jumping mouse Ord’s kangaroo rat Apache pocket mouse Zapus princeps Dipodomys ordii Perognathus apache streambank desert mountain 1:1 0 1 2 3 4 5 6 inches 1 - Rodents Tracks are actual size. Pocket Gopher Porcupine Family Order Rodentia Family (Erethizonidae) (Geomyidae) Beaver Family (Castoridae) porcupine Erethizon dorsatum mountains/grasslands scale 1:3 beaver Castor canadensis streams/lakes/wetlands Northern pocket gopher scale 1:3 Thomomys talpoides grasslands scale 1:1 1:3 0 1 2 3 4 5 6 inches Squirrel Family (Sciuridae) least chipmunk Colorado chipmunk chicaree Eutamias minimus Eutamias quadrivittatus Tamiasciurus douglassi mountain/grassland mountain forest Abert’s squirrel Sciurus aberti kaibabensis mountain/forest rock ground squirrel golden-mantled ground Spermophilus variegatus squirrel mountain Spermophilus lateralis streambank yellow-bellied marmot Gunnison’s prairie dog thirteen-lined ground squirrel Marmota flaviventris Cynomys gunnisoni Spermophilus tridecemlineatus mountain/rockslide grassland grassland 1:1 0 1 2 3 4 5 6 inches 2 - Rodents Rodentia tracks vary in size. Sciuridae tracks are actual size. -
First Record of Eriochloa Villosa (Thunb.) Kunth in Austria and Notes on Its Distribution and Agricultural Impact in Central Europe
BioInvasions Records (2020) Volume 9, Issue 1: 8–16 CORRECTED PROOF Research Article First record of Eriochloa villosa (Thunb.) Kunth in Austria and notes on its distribution and agricultural impact in Central Europe Swen Follak1,*, Michael Schwarz2 and Franz Essl3 1Institute for Sustainable Plant Production, Austrian Agency for Health and Food Safety, Vienna, Austria 2Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety, Vienna, Austria 3Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, Vienna, Austria Author e-mails: [email protected] (SF), [email protected] (MS), [email protected] (FE) *Corresponding author Citation: Follak S, Schwarz M, Essl F (2020) First record of Eriochloa villosa Abstract (Thunb.) Kunth in Austria and notes on its distribution and agricultural impact in Eriochloa villosa is native to temperate Eastern Asia and is an emerging weed in Central Europe. BioInvasions Records 9(1): Central Europe. Its current distribution in Central Europe was analyzed using 8–16, https://doi.org/10.3391/bir.2020.9.1.02 distribution data from the literature and data collected during field trips. In 2019, E. Received: 6 September 2019 villosa was recorded for the first time in Austria. It was found in a crop field in Accepted: 28 November 2019 Unterretzbach in Lower Austria (Eastern Austria). So far, the abundance of E. villosa in the weed communities in Austria and the neighboring Czech Republic is low and Published: 21 February 2020 thus, its present agricultural impact can be considered limited. However, in Romania Handling editor: Quentin Groom and Hungary, the number of records of E.