First Description of Developmental Processes in Sclerodactyla Multipes (Echinodermata: Holothuroidea: Dendrochirotida) from Misaki, Sagami Bay, Japan

Total Page:16

File Type:pdf, Size:1020Kb

First Description of Developmental Processes in Sclerodactyla Multipes (Echinodermata: Holothuroidea: Dendrochirotida) from Misaki, Sagami Bay, Japan Plankton Benthos Res 16(3): 228–236, 2021 Plankton & Benthos Research © The Plankton Society of Japan First description of developmental processes in Sclerodactyla multipes (Echinodermata: Holothuroidea: Dendrochirotida) from Misaki, Sagami Bay, Japan Hisanori Kohtsuka1, Kohei Oguchi2, Yusuke Yamana3 & Masanori Okanishi1,* 1 Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238–0225, Japan 2 National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8566, Japan 3 Wakayama Prefectural Museum of Natural History, 370–1 Funo, Kainan,Wakayama 642–0001, Japan Received 15 September 2020; Accepted 30 April 2021 Responsible Editor: Shinji Shimode doi: 10.3800/pbr.16.228 Abstract: More than 100 individuals of sea cucumber larvae were collected in the Japanese coastal sea of Moroiso, Sagami Bay, Kanagawa Prefecture, central-eastern Japan, in January 2018. Based on an obtained sequence of mitochon- drial 16S rRNA gene region of one juvenile, it was identified as Sclerodactyla multipes by BLAST search with 0.3% genetic distance. The developmental process of the S. multipes was observed for three months, in which time, they grew from 250 µm to about 4 mm in length; here they showed distinct tentacles and dermal ossicles. Detailed morphological features of this species were described based on stereomicroscopic, fluorescence and SEM observations for the first time. This is the first description of life history through planktonic larva to juveniles in the family Sclerodactylidae. Key words: Sea cucumber, 16S rRNA, SEM, fluorescence microscope, larvae Sclerodactyla briareus (Lesueur, 1824) from the western Introduction Atlantic and S. multipes (Théel, 1886) from the western Although embryological studies on sea cucumbers Pacific (Théel 1886, Hendler et al. 1995, Imaoka 1995, (Echinodermata: Holothuroidea) have been provided for Kuramochi 2012). In these species, although a brief text- several commercially useful species, such as Apostichopus based description of development in S. briareus has been armata (Selenka, 1867), Athyonidium chilensis (Semper, published (Ohshima 1925), no embryological study accom- 1868), and Isostichopus fuscus (Ludwig, 1875) (Inaba & panied by photographs has been reported in this genus. Maruyama 1988, Hamel et al. 2003, Guisado et al. 2012, In this study, doliolaria and pentactula forms of the lar- Eguchi 2015, Huang et al. 2018), data for non-commercial vae of sea cucumbers were collected by towing plankton species are inadequate (Inaba & Maruyama 1988). The or- nets at the sea surface in Moroiso Bay, Miura Peninsula, der Dendrochirotida is a suspension-feeding sea cucumber Kanagawa Prefecture, Japan. We identified this species by world-widely distributed on the sea floor. The accumulated DNA sequences based on 16S rRNA gene region, and doc- biological knowledge of this order is important for fisheries umented the growth of its larvae using multiple observa- management and aquaculture of sea cucumbers, but its ear- tion methods. liest life stages are scarcely studied (Gianasi et al. 2018). Recently, studies on the earliest life stages of 61 species in Methods 32 genera of 5 families have been conducted, but only 15 species have been studied following the process of growth One hundred and ten individuals were collected on 5 from larvae to juvenile (Table 1). The genus Sclerodactyla January 2018, using a plankton net (diameter 60 cm, mesh (Sclerodactylidae: Dendrochirotoda: Actinopoda) includes size 0.33 mm, net length 150 cm) towed at the sea surface for 5 min at Moroiso Inlet (35°09.405′N.139°36.345′E), Mi- * Corresponding author: Masanori Okanishi; E-mail, mokanishi@ ura Peninsula, Kanagawa Prefecture (Fig. 1). tezuru-mozuru.com Larvae of sea cucumbers were housed in a cylindrical First description of developmental processes in Sclerodactyla multipes (Echinodermata: Holothuroidea:Dendrochirotida) from Misaki, Sagami Bay, Japan Table 1. Summaruy of developmental studies of dendrochirotid sea cucumbers. “̶” means no data. Spawning Unfertilized egg Fertilized egg Time and maximum size Type of Order Family Species Remarks Reference reproduction Period Observation Observation Size Observation Size Floating larva Pentactula Juvenile Dendrochi- Cucumari- Aslia lefevrei (Barrois, 1882) Lecithotrophic Jan–May ○ ○ ̶ ○ 400– 6 days, 7 days, 6–8 weeks, ̶ Costelloe 1985, 1988, rotida idae larva 650 µm 650 µm, 700 µm 3,500 µm Thorson 1946 Doliolaria Athyonidium chilensis (Sem- Lecithotrophic ̶ ○ ○ ̶ ○ 360 µm 5 days, 7 days, 21 days, ̶ Guisado et al. 2012 per, 1868) larva 433 µm, 629 µm 689 µm Vitellaria Benthophyllophorus conchil- Asexual reproduc- May ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Deichmann 1922 egum (Pourtalès, 1868) tion: fission Cladodactyla crocea crocea Brooding Jan–Apr ̶ ○ 700 µm ̶ ̶ ̶ ̶ ̶ hermaphroditic. Thomson 1878 (Lesson, 1830) Cucumaria fallax Ludwig, Lecithotrophic ○ ○ ̶ ○ ̶ 3.75 days, 9.5–10.75 18–21 days, ̶ McEuen 1987, 1988 1875 larva 725 µm, days, 700– Doliolaria 600–710 µm 1,125 µm Cucumaria frondosa (Gun- Lecithotrophic Mar, June ○ ○ ̶ ○ 900 µm 8 days, 9–11 days, 46 days, ̶ Gianasi et al. 2018, nerus, 1767) larva 1,550 µm, 1,300 µm 1,400 µm Hamel & Mercier 1996, Vitellaria So et al. 2011 Cucumaria georgiana (Lam- Brooding ̶ ̶ ○ 1,000 µm ̶ ̶ ̶ ̶ ̶ ̶ Vaney 1925 pert, 1886) Cucumaria ijimai Ohshima, Brooding ̶ ̶ ○ 550 µm ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Ohshima 1915 1915 Cucumaria japonica Semper, ̶ Apr–Junu, ○ ̶ ̶ ○ 500 µm ̶ ̶ ̶ Each individual casts Levin 1995 1868 Sep–Oct 300,000 floating eggs. Cucumaria joubini Vaney, Brooding ̶ ̶ ○ 1,200 µm ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Vaney 1914 1925 Cucumaria miniata (Brandt, Lecithotrophic ○ ○ ̶ ○ 400– 3.5 days, 8–13 days, 29–30 days, ̶ McEuen 1987 1835) larva 500 µm 675–765 µm, 700–800 µm 875– Doliolaria 1,230 µm Cucumaria piperata (Stimp- Lecithotrophic ̶ ○ ○ ̶ ○ 480– 3.5 days, 8–9.5 days, 22–25 days, ̶ McEuen 1987 son, 1864) larva 601 µm 675–765 µm, 740–770 µm 925– Doliolaria 1,325 µm Cucumaria pseudocurata Brooding mid Dec– ○ ○ ̶ ○ 916– Just observed Just observed Just Gonochoric. McEuen 1987, Deichmann, 1938 early Janu 1,237 µm observed Rutherford 1977 Cucumaria vaneyi Cherbon- Brooding ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955 nier, 1949 Cladodactyla crocea crocea Brooding ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955 (Lesson, 1830) Echinopsolus koehleri Brooding ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955 (Vaney, 1914) Hemiocnus syracusanus ̶ Nov–Dec ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Lo Bianco 1899 (Grube, 1840) Incubocnus incubans (Cher- Brooding Apr ○ 500 µm Gonochoric. Cherbonnier 1972 bonnier, 1972) Leptopentacta panamica ̶ Jan? ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Deichmann 1941 Deichmann, 1941 Lissothuria antillensis Paw- Brooding all ○ 400 µm Miller 1985 son, 1967 Neoamphicyclus lividus Brooding Dec ○ 370 µm Hickman 1978 229 Hickman, 1962 H. Kohtsuka et al. 230 Table 1. Continued.Summaruy of developmental studies of dendrochirotid sea cucumbers. “̶” means no data. Spawning Unfertilized egg Fertilized egg Time and maximum size Type of Order Family Species Remarks Reference reproduction Period Observation Observation Size Observation Size Floating larva Pentactula Juvenile Ocnus glacialis (Ljungman, Brooding ̶ ̶ ○ 700 µm ̶ ̶ ̶ ̶ ̶ ̶ Mortensen 1894, 1879) Ludwig 1900 Ocnus planci (Brandt, 1835) Lecithotrophic Mar–Apr ̶ ̶ ̶ ̶ 500 µm ̶ ̶ ̶ ̶ Hyman 1955, Vaney larva 1925 Paraleptopentacta elongata Lecithotrophic Jan ○ ○ ̶ ○ 250– Doliolaria Just observed 22–25 days, In vitro observatipn. Chia & Buchanan 1969 (Düben & Koren, 1846) larva 350 µm 925– 1,325 µm Pawsonia saxicola (Brady & Lecithotrophic ̶ ̶ ̶ ̶ ̶ 400 µm ̶ ̶ ̶ ̶ Orton 1914, Thorson Robertson, 1871) larva 1946 Pentactella laevigata Verrill, Brooding ̶ ̶ ○ 1,500 µm ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Simpson 1876 1982 Pseudocnus echinatus (von Lecithotrophic June–Aug ○ ○ ̶ ○ 300– 2 days, 7 days ○ The pentactula has 5 Ohshima 1921 Marenzeller, 1882) larva 400 µm 500 µm, tentacles Doliolaria Pseudocnus grubii (von ̶ Nov–Dec ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Lo Bianco 1899 Marenzeller, 1874) Pseudocnus lamperti Brooding ̶ ̶ ○ 800 µm ̶ ̶ ̶ ̶ ̶ Hermaphroditic. Hyman 1955, Ohshima (Ohshima, 1915) 1915 Pseudocnus lubricus (Clark, Brooding Nov–Dec ○ ○ 1,050 µm ○ 877– 2 days, 7 days ○ The pentactula has 5 McEuen 1987, Engstrom 1901) 1,078 µm 500 µm tentacles. Gonochoric. 1982 Doliolaria Pseudopsolus macquariensis Brooding May–June ○ 1,800 µm Hermaphroditic. Simpson 1982 (Dendy, 1897) Psolicrux coatsi (Vaney, Brooding ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955 1908) Stereoderma imbricata Brooding ̶ ̶ ○ 1,200 µm ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Ohshima (Ohshima, 1915) 1915 Trachythyone parva (Lud- Brooding ̶ ̶ ○ 200 µm ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Clark wig, 1875) 1946 Phyllo- Pentamera chiloensis (Lud- ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 9,000 µm A record of juvenile. Deichmann 1941 phoridae wig, 1886) Pentamera populifera (St- Lecithotrophic Feb–Mar ○ ̶ ○ 339– 2.25 days, 6–7.5 days, 17 days? ̶ McEuen 1987 impson, 1864) larva 439 µm 550 µm, 490–600 µm Doliolaria Pentamera pulcherrima ○ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ McEuen 1988 Ayres, 1852 Phyllophorus (Phyllophorus) Brooding May–Aug ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Ludwig urna Grube, 1840 1898 Thyone benti Deichmann, Lecithotrophic Winter ̶ ○ 512– ̶ ̶ ̶ ̶ ̶ ̶ McEuen 1987 1937 larva? 560 µm Thyone inermis Heller, 1868 ̶ Oct–Nov ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Lo Bianco 1899 Psolidae Lissothuria nutriens (Clark, Brooding all ○ 600 µm Gonochoric. Wootton 1949 1901) Lissothuria ornata Verrill, Brooding ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955 1867 Psolidium incubans Ekman, Brooding ̶ ̶ ○ 640 µm ̶ ̶ ̶ ̶ ̶ ̶ Hyman 1955, Ekman 1925 1925 First description of developmental processes in Sclerodactyla multipes (Echinodermata: Holothuroidea:Dendrochirotida) from Misaki, Sagami Bay, Japan Table 1.
Recommended publications
  • Holoturias (Echinodermata: Holothlroidea) De Las Islas Canarias: Ii. Ordenes Dendrochirotida, Elasipodida Y Apodida Y Molpadida
    Rev .Acad. Canar .Cienc. , IV (nums. 3 y 4), 163-185 (1992) HOLOTURIAS (ECHINODERMATA: HOLOTHLROIDEA) DE LAS ISLAS CANARIAS: II. ORDENES DENDROCHIROTIDA, ELASIPODIDA, APODIDA Y MOLPADIDA. A. Perez-Ruzafa\ C. Marcos' y J.J. Bacallado' ' Depto. de Biologfa Animal y Ecologia. Universidad de Murcia. 30100 Murcia. ' Museo Insular de Ciencias Naturales. Santa Cruz de Tenerife. Islas Canarias ABSTRACT The holothurian fauna of Canary Islands has been studied on ihe base of mid-, infra- and circaliltoral sampling, existing museum collections and bibliographic data. Its includes 34 species (17 Aspidochirolida. 4 Dendrochirotida, 10 Elasipodida, 2 Apt)dida and 1 Molpadida). This paper presents the catalogue, biological data and determination keys of the Orderes Dendrochirotida, Elasip>odida, Aptxlida and Molpadida and a general discussion about the Class Hololhuroidca in these Islands. KK.\ WORDS: Holothuroidca, Dendrochirotida, Elasipodida, Apodida, Molpadida, Canary Islands. RESUMEN La fauna de holoturias de las islas Canarias ha sido estudiada en base a muestreos realizados en el medio, infra y circaliloral, datos existentes en las colccciones de diferentes museos y referencias bibliograficas. Incluye 34 especies (17 Aspidtxhirotida, 4 Dendrochirotida, lU Elasiptxlida, 2 Apodida y 1 Molpadida). En este Irabajo se prcscnta cl calalogo, datos biologicos y las claves dc detcrminacion dc los Ordcncs Dendrochirotida, Elasipodida. Apodida y Molpadida, asi como una discusion general acerca de la Clase Hololhuroidca en las islas. PALABRAS CLA\T: Hololhuroidca, DcndrvKhirolida, Elasipi^dida, Apodida. Molpadida, Islas Canarias. 1. INTRODLCCION A pesar de la amplia distribucion de esta Clase, de su interes desde el punio de vista comercial (en aspectos como la alimentacion o la investigacion farmacologica) y del importante papel ecologico que juega sobre todo en las comunidades bentonicas, existe una gran escasez de trabajos que se hace mas paiente en determinados grupos sistematicos perienecientes a la misma.
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Psolus Phantapus
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Psolus phantapus (Psolus) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Holothuroidea (Sea Cucumbers) Order: Dendrochirotida (Sea Cucumbers) Family: Psolidae (Sea Cucumbers) General comments: none No Species Conservation Range Maps Available for Psolus SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: Psolus is currently undergoing steep population declines, which has already led to, or if unchecked is likely to lead to, local extinction and/or range contraction. Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: Psolus phantapus is highly vulnerable to climate change. Understudied rare taxa: Recently documented or poorly surveyed rare species for which risk of extirpation is potentially high (e.g. few known occurrences) but insufficient data exist to conclusively assess distribution and status. *criteria only qualifies for Priority 3 level SGCN* Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • Spawning of the Sea Cucumber <I>Cucumaria Frondosa</I> in the St
    12 SPC Beche-de-mer Information Bulletin #7 June 1995 Spawning of the sea cucumber Cucumaria by Jean-Francois Hamel & Annie Mercier frondosa in the St Lawrence Estuary, Québec, Canada eastern Canada Jean-Francois Hamel (Société d’Exploration et de Valorisation de l’Environnement (SEVE), 90 Notre-Dame Est, Rimouski (Québec), Canada G5L 1Z6) and Annie Mercier (Département d’océanographie, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski (Québec), Canada G5L 3A1) present in the following article their work about the spawning of Cucumaria frondosa in the Lower St Lawrence Estuary, eastern Canada. Abstract Our work presents data on spawning of the commercial sea cucumber Cucumaria frondosa from the Lower St Lawrence Estuary, eastern Canada. The rapidly rising concentration of chlorophyll a in early spring 1992 and 1993 appeared as the spawning cue for male and female individuals during the large-scale monitoring. A closer look at the spawning cue on a scale of hours revealed that males spawned first, as the chlorophyll a concentration decreased and as the temperature increased rapidly, during the low tide at sun rise. Spawning in females occurred shortly thereafter and seemed to be triggered by the presence of sperm in the water column. Those results demonstrate that the correlation between spawning and environmental factors is often more complex than that suggested by large-scale monitoring. Introduction present study, we carefully monitored the spawning period from beginning to end during two years, Cucumaria frondosa, the species chosen for this collecting samples at close intervals and making experiment, is a commonly occurring coastal, large correlations with environmental conditions.
    [Show full text]
  • An Illustrated Key to the Sea Cucumbers of the South Atlantic Bight
    Prepared by the Southeastern Regional Taxonomic Center AAnn iilllluussttrraatteedd kkeeyy ttoo tthhee sseeaa ccuuccuummbbeerrss ooff tthhee SSoouutthh AAttllaannttiicc BBiigghhtt David L. Pawson and Doris J. Pawson Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 20013-7012 1 Table of Contents Introduction ..........................................................................................................................3 General Morphology (internal) ................................................................................3 General morphology (external) ................................................................................4 Preparation of ossicles .............................................................................................4 Checklist of South Atlantic Bight holothuroideans ............................................................5 Key to Orders of Holothuroidea known from the South Atlantic Bight ..............................6 Key to members of the Order Dendrochirotida known from the South Atlantic Bight .......9 Key to species of the Aspidochirotida known from the South Atlantic Bight...................28 Key to species of the Molpadiida known from the South Atlantic Bight ..........................34 Key to species of the Apodiida known from the South Atlantic Bight .............................35 This document was prepared by Rachael A. King and is only part of a more extensive study that is expected to be published in 2008. The research was conducted in part using funding
    [Show full text]
  • Appendix 3 Marine Spcies Lists
    Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Review, the (Medical) Benefits and Disadvantage of Sea Cucumber
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. III (Sep. – Oct. 2017), PP 30-36 www.iosrjournals.org Review, The (medical) benefits and disadvantage of sea cucumber Leonie Sophia van den Hoek, 1) Emad K. Bayoumi 2). 1 Department of Marine Biology Science, Liberty International University, Wilmington, USA. Professional Member Marine Biological Association, UK. 2 Department of General Surgery, Medical Academy Named after S. I. Georgiesky of Crimea Federal University, Crimea, Russia Corresponding Author: Leonie Sophia van den Hoek Abstract: A remarkable feature of Holothurians is the catch collagen that forms their body wall. Catch collagen has two states, soft and stiff, that are under neurological control [1]. A study [3] provides evidence that the process of new organ formation in holothurians can be described as an intermediate process showing characteristics of both epimorphic and morphallactic phenomena. Tropical sea cucumbers, have a previously unappreciated role in the support of ecosystem resilience in the face of global change, it is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean [9]. Medical benefits of the sea cucumber are; Losing weight [19], decreasing cholesterol [10], improved calcium solubility under simulated gastrointestinal digestion and also promoted calcium absorption in Caco-2 and HT-29 cells [20], reducing arthritis pain [21], HIV therapy [21], treatment osteoarthritis [21], antifungal steroid glycoside [22], collagen protein [14], alternative to mammalian collagen [14], alternative for blood thinners [29], enhancing immunity and disease resistance [30].
    [Show full text]
  • Zootaxa, BANZARE Holothuroids (Echinodermata: Holothuroidea)
    Zootaxa 2196: 1–18 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) BANZARE holothuroids (Echinodermata: Holothuroidea) P. MARK O’LOUGHLIN Marine Science Department, Museum Victoria, GPO Box 666, Melbourne 3001, Australia. E-mail: [email protected] Abstract The holothuroid species collected by The British, Australian and New Zealand Antarctic Research Expedition (BANZARE) are listed, with some systematic annotations. A previous report by O’Loughlin on some BANZARE holothuroids is revised and incorporated. Four new species are described: the Antarctic dactylochirotid Echinocucumis kirrilyae sp. nov.; the Kerguelen dendrochirotid Clarkiella deichmannae sp. nov.; the Antarctic dendrochirotids Trachythyone cynthiae sp. nov. and Trachythyone mackenzieae sp. nov. Cucumaria serrata var. intermedia Théel from Heard and Kerguelen, and Cucumaria serrata var. marionensis Théel from Marion, are raised to species status, and assigned to Pseudocnus Panning. Cucumaria (Semperia) ekmani Ludwig & Heding is a junior synonym of Cucumaria kerguelensis Théel. Cucumaria kerguelensis is re-assigned to Neopsolidium Pawson. Thyone recurvata Théel and Cucumaria squamata Ludwig are junior synonyms of Trachythyone muricata Studer. Cucumaria (Semperia) bouvetensis Ludwig & Heding is formally re-assigned to Trachythyone. Trachythyone baja Hernández is a junior synonym of Trachythyone bouvetensis (Ludwig & Heding). Molecular genetic data indicate possible allopatric cryptic Antarctic forms for the morpho-species Laetmogone wyvillethomsoni Théel. A table with all species and station data is provided. Key words: Antarctica, Kerguelen, Macquarie, Marion, Tasmania, new species, synonymies, generic re-assignments Introduction The British, Australian and New Zealand Antarctic Research Expedition (BANZARE), under the command of Sir Douglas Mawson, comprised two research voyages by the Discovery.
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • Habitats Et Communautés Benthiques Du Bassin Oriental De La Manche
    UNIVERSITE LILLE NORD DE FRANCE ECOLE DOCTORALE Sciences de la Matière, du Rayonnement et de l’Environnement Thèse pour obtenir le grade de DOCTEUR DE L’UNIVERSITE LILLE 1 Discipline : Géosciences, Ecologie, Paléontologie, Océanographie Par Aurélie FOVEAU HABITATS ET COMMUNAUTES BENTHIQUES DU BASSIN ORIENTAL DE LA MANCHE : ETAT DES LIEUX AU DEBUT DU XXIème SIECLE Soutenue le 14 décembre 2009 devant un jury composé de : Roger COGGAN, CEFAS Examinateur Jean‐Claude DAUVIN, professeur, Université Lille 1 Co‐directeur de thèse Steven DEGRAER, Royal Belgian Institute of Natural Sciences Rapporteur Nicolas DESROY, cadre de recherche, IFREMER Co‐directeur de thèse Jean‐Marie DEWARUMEZ, ingénieur de recherche, CNRS Co‐directeur de thèse Christian HILY, chargé de recherche, CNRS Rapporteur François SCHMITT, directeur de recherche, CNRS Examinateur Alain TRENTESAUX, professeur, Université Lille 1 Président du Jury 1 RESUME Cette étude est consacrée à la réactualisation de la distribution spatiale des communautés macrobenthiques du bassin oriental de la Manche au début des années 2000, avec une comparaison avec celles identifiées par L. Cabioch et ses collaborateurs pour la période 1971-1976. La distribution des communautés macrobenthiques étant régie pro parte par la couverture sédimentaire, la nature des fonds du bassin oriental de la Manche a été caractérisée et cartographiée à partir de la classification de Folk pour les deux périodes étudiées. Une relative stabilité de la couverture sédimentaire a été mise en évidence : 69 % de la zone étudiée présentant peu ou pas de changements. Ces observations ont été mises en relation avec l’hydrodynamisme, facteur structurant dominant de la couverture sédimentaire en Manche. Les zones où un changement est observable se situent dans les baies, à la sortie des estuaires et à proximité des zones connues de bancs de sable.
    [Show full text]