The CL Gerling and JM Gilliss Correspondence (1847–1856)

Total Page:16

File Type:pdf, Size:1020Kb

The CL Gerling and JM Gilliss Correspondence (1847–1856) JHA0010.1177/0021828620919536Journal for the History of AstronomySanhueza-Cerda and Valderrama 919536research-article2020 Article JHA Journal for the History of Astronomy 2020, Vol. 51(2) 187 –208 Finding a Point of Observation © The Author(s) 2020 Article reuse guidelines: in the Global South: The sagepub.com/journals-permissions https://doi.org/10.1177/0021828620919536DOI: 10.1177/0021828620919536 C. L. Gerling and J.M. Gilliss journals.sagepub.com/home/jha Correspondence (1847–1856) Carlos Sanhueza-Cerda Universidad de Chile, Chile Lorena B. Valderrama University Alberto Hurtado, Chile Abstract Historians of science have amply demonstrated the transnational character of science; however, they have not sufficiently attended to how several scientific projects were coordinated as part of global initiatives. Our research – based on the unpublished, written correspondence between Christian Ludwig Gerling in Germany and James M. Gilliss in the United States, from 1847 to 1856 – examines the issues that were being discussed in the search for an observation point in Chile that could be linked to the various astronomical research projects happening in the global north. This article shows that the building of this network had to navigate communicational and language barriers, financial uncertainty, lack of adequate scientific instruments, and the influence of intermediaries. In fact, the intermediaries involved affected the formulation of questions and objectives, as well as the choice of methods and instruments to be used (such as Alexander von Humboldt and Friedrich Gauss), and directly impacted on how these things were brought to bear (for example, instrument manufacturers, diplomats, and translators). Keywords Astronomy in the nineteenth century, Christian Ludwig Gerling, James M. Gilliss, Chile, astronomical networks Corresponding author: Carlos Sanhueza-Cerda, Department of History, Universidad de Chile, Ignacio Carrera, 1025 Santiago, Chile. Email: [email protected] 188 Journal for the History of Astronomy 51(2) Introduction The history of science has been discussing the global dimension since the end of the twentieth century. Accordingly, studies have been conducted on the multiple facets of exchanges between Europe and the rest of the world, regarding the representation of nature,1 trade and art,2 and the development of the Spanish, Portuguese, and British empires.3 Attention has recently been paid to the role of knowledge in the process of globalization,4 as well as to intermediaries that have acted as liaisons between the local and the global.5 In 2010, the journal Isis dedicated a special issue to the global histories of science, attending “to the connections and disconnections of science on the global stage.”6 For those studying the history of science, its global dimension is quite evident. Yet the extent to which science, as an activity, constitutes an international phenomenon has not yet been adequately addressed. How were these global networks of exchange formed? What implications did this have? What dynamics shaped this process? Lissa Roberts, who has discussed some of these issues, calls for greater integration in the history of science, in which science is seen as a “mutually constructive element of global history.”7 This is because science, according to Roberts, is “a historical phenom- enon, one that is simultaneously a constructive element and a product of more general history on a global scale.”8 In this sense, there is a need for dialogue among historians of science and other historians interested in broad developments, integrations, and interac- tions around the globe. Turchetti, Herran, and Boudia have inquired as to whether sci- ence can actually be transnational. Although the question may seem trivial, it proves quite relevant when considering that it has been virtually absent from debates on trans- national, world and new global history, as well as on the history of science. These authors believe that the history of science can open “new spaces of collaboration which could propel the discipline beyond its current reach,” which is why they call for there to be debate on the “transnational history of sciences.”9 In effect, the issue is not whether science can constitute a global or translational activ- ity,10 but rather on what scale and in what conditions this dimension can be understood. Sujit Sivasundaram has shed light on the complex nature of writing about the history of science from a global perspective.11 Again Roberts, in her comments on the Chemical Heritage Foundation’s “Chemistry and Global History” conference in 2014, shared her thoughts on how to understand global history, stating that “. it is preferable to speak of global histories, especially since this allows for the coexistence (whether parallel, col- laborative, or competitive) of multiple, spatio-temporal regimes, imaginaries, expecta- tions, and so forth.” Furthermore, Roberts affirms that some prefer to consider the notion of global “as referring to a method or approach rather than a geographical frame. Speaking of ‘global histories’ in this sense affords exploration of productive tensions within and between levels of scale (local/regional/national/world), in dialogue with other tensions.” In other words, speaking of global histories “helps us to recognize material agency as ‘essentially’ local.”12 Therefore, this perspective allows for the linking of dif- ferent scales without necessarily having to favour one over the other. One fundamental element for understanding global exchanges is the correspondence between different actors that took part in these networks. It has been argued that, since the scientific revolution, collaboration, and the exchange of information (especially in Sanhueza-Cerda and Valderrama 189 terms of observations and experiments) arose through the letters scientists sent each other. The analysis of these documents allows us to study, from the wings, the episte- mologies at play during observations, the relationship between communication and observation and discussions on the effects of the scientific revolution.13 In one sense, these letters by scientists and academics include some aspects that allowed them to rein- force their authority, whether in terms of the handling of instruments or in making the best observations possible. In another sense, this communication created what has been called a “social environment” that allowed for global scientific projects. The correspond- ence between scientists allowed them to find sponsors, consolidate friendships, and establish reliable channels of communication.14 In the case of astronomy, it has been mentioned that the first modern astronomers whose ability to find data on the phenomena they studied largely depended on their colleagues. Through these exchanges, they wove “webs of learned correspondence in which details of instrumentation, observational protocols, data in various forms, and procedures for their reduction were highly prized matters of both jealous and generous exchange.”15 These com- munications were a mechanism for the dissemination of news on heavenly phenomena over long distances “for discussion on their nature.”16 This did not strictly deal with information on research that was underway. In effect, as will be seen in this case study, the correspond- ence between astronomers identified an “uncertainness associated with the other compo- nents of the discipline: the quality of the instrument used (or not used) to record the observation, the optical interpretation of the phenomena observed,” as well as including discussions on the mathematical techniques used to deduce positions or the physical princi- ples involved.17 Many of the discussions and debates that occurred through this correspond- ence not only involved the authors or readers of these letters, but also other actors (such as telescope manufacturers) who were mentioned within. At the same time, as shall be seen later on, the letters themselves were cited in scientific articles and science journalism. Another important point of interest in the relationship between science and a glo- balized world has to do with the scientific projects that, in order to successfully meet their goals, had to coordinate an array of different tasks. These ranged from calibrating and producing the instruments needed to carry out measurements and observations, to the transporting of people and economic resources to make the research possible. To that end, scholarship has been produced on the study of the Earth’s magnetic field during the 1830s – a period also known as the “magnetic crusade,”18 – the late nineteenth-century French effort to map the night sky from different parts of the globe in what was called the Carte du ciel.19 The case of the Astronomical Expedition to the Southern Hemisphere is one example of these nineteenth century global projects. Nineteenth century astronomy as a global project: the case of the astronomical expedition to the Southern Hemisphere Astronomy in the nineteenth century constitutes an ideal setting for the analysis of global projects, insofar as they required observations to be made across the planet for their findings to be considered valid. In effect, astronomy, at the time, was facing the 190 Journal for the History of Astronomy 51(2) challenge of coordinating different points of observation in the aim of determining the distance between stars and building a system of measurement that would make it pos- sible to locate the positions, distances, and orbits of celestial
Recommended publications
  • The Comet's Tale, and Therefore the Object As a Whole Would the Section Director Nick James Highlighted Have a Low Surface Brightness
    1 Diebold Schilling, Disaster in connection with two comets sighted in 1456, Lucerne Chronicle, 1513 (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 38 2019 June britastro.org/comet Evolution of the comet C/2016 R2 (PANSTARRS) along a total of ten days on January 2018. Composition of pictures taken with a zoom lens from Teide Observatory in Canary Islands. J.J Chambó Bris 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 Melvyn Taylor’s Alex Pratt 6 Observations of Comet C/1995 01 (Hale-Bopp) 3 The Enigma of Neil Norman 9 Comet Encke 4 Setting up the David Swan 14 C*Hyperstar for Imaging Comets 5 Comet Software Owen Brazell 19 6 Pro-Am José Joaquín Chambó Bris 25 Astrophotography of Comets 7 Elizabeth Roemer: A Denis Buczynski 28 Consummate Comet Section Secretary Observer 8 Historical Cometary Amar A Sharma 37 Observations in India: Part 2 – Mughal Empire 16th and 17th Century 9 Dr Reginald Denis Buczynski 42 Waterfield and His Section Secretary Medals 10 Contacts 45 Picture Gallery Please note that copyright 46 of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the We have had a couple of relatively bright Comet’s Tale. Many thanks to Janice but diffuse comets through the winter and McClean for editing this issue and to Denis there are plenty of images of Buczynski for soliciting contributions. 46P/Wirtanen and C/2018 Y1 (Iwamoto) Thanks also to the section committee for in our archive.
    [Show full text]
  • How We Found About COMETS
    How we found about COMETS Isaac Asimov Isaac Asimov is a master storyteller, one of the world’s greatest writers of science fiction. He is also a noted expert on the history of scientific development, with a gift for explaining the wonders of science to non- experts, both young and old. These stories are science-facts, but just as readable as science fiction.Before we found out about comets, the superstitious thought they were signs of bad times ahead. The ancient Greeks called comets “aster kometes” meaning hairy stars. Even to the modern day astronomer, these nomads of the solar system remain a puzzle. Isaac Asimov makes a difficult subject understandable and enjoyable to read. 1. The hairy stars Human beings have been watching the sky at night for many thousands of years because it is so beautiful. For one thing, there are thousands of stars scattered over the sky, some brighter than others. These stars make a pattern that is the same night after night and that slowly turns in a smooth and regular way. There is the Moon, which does not seem a mere dot of light like the stars, but a larger body. Sometimes it is a perfect circle of light but at other times it is a different shape—a half circle or a curved crescent. It moves against the stars from night to night. One midnight, it could be near a particular star, and the next midnight, quite far away from that star. There are also visible 5 star-like objects that are brighter than the stars.
    [Show full text]
  • Goodman, Matthew (2018) from 'Magnetic Fever' to 'Magnetical Insanity': Historical Geographies of British Terrestrial Magnetic Research, 1833- 1857
    Goodman, Matthew (2018) From 'magnetic fever' to 'magnetical insanity': historical geographies of British terrestrial magnetic research, 1833- 1857. PhD thesis. https://theses.gla.ac.uk/30829/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] From ‘magnetic fever’ to ‘magnetical insanity’: historical geographies of British terrestrial magnetic research, 1833-1857 Matthew Goodman Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy (PhD) School of Geographical and Earth Sciences College of Science and Engineering University of Glasgow Contents Abstract................................................................................................................................................................ 5 List of Figures .................................................................................................................................................... 6 Acknowledgements .........................................................................................................................................
    [Show full text]
  • King David's Altar in Jerusalem Dated by the Bright Appearance of Comet
    Annals of Archaeology Volume 1, Issue 1, 2018, PP 30-37 King David’s Altar in Jerusalem Dated by the Bright Appearance of Comet Encke in 964 BC Göran Henriksson Department of Physics and Astronomy, Uppsala University, Box 516, SE 751 20 Uppsala, Sweden *Corresponding Author: Göran Henriksson, Department of Physics and Astronomy, Uppsala University, Box 516, SE 751 20 Uppsala, [email protected] ABSTRACT At the time corresponding to our end of May and beginning of June in 964 BC a bright comet with a very long tail dominated the night sky of the northern hemisphere. It was Comet Encke that was very bright during the Bronze Age, but today it is scarcely visible to the naked eye. It first appeared as a small comet close to the zenith, but for every night it became greater and brighter and moved slowly to the north with its tail pointing southwards. In the first week of June the tail was stretched out across the whole sky and at midnight it was visible close to the meridian. In this paper the author wishes to test the hypothesis that this appearance of Comet Encke corresponds to the motion in the sky above Jerusalem of “the sword of the Angel of the Lord”, mentioned in 1 Chronicles, in the Old Testament. Encke was first circumpolar and finally set at the northern horizon on 8 June in 964 BC at 22. This happened according to the historical chronology between 965 and 960 BC. The calculations of the orbit of Comet Encke have been performed by a computer program developed by the author.
    [Show full text]
  • 45-68 Verdun
    | The Determination of the Solar Parallax from Transits of Venus in the 18th Century | 45 | The Determination of the Solar Parallax from Transits of Venus in the 18 th Century Andreas VERDUN * Manuscript received September 28, 200 4, accepted October 30, 2004 T Abstract The transits of Venus in 1761 and 1769 initiated the first global observation campaigns performed with international cooperation. The goal of these campaigns was the determination of the solar parallax with high precision. Enormous efforts were made to send expeditions to the most distant and then still unknown regions of the Earth to measure the instants of contact of the transits. The determination of the exact value of the solar parallax from these observations was not only of scientific importance, but it was expected to improve the astronomical tables which were used, e.g., for naviga - tion. Hundreds of single measurements were acquired. The astronomers, however, were faced by a new problem: How is such a small quantity like the solar parallax to be derived from observations deteriorated by measuring errors? Is it possible to determine the solar parallax with an accuracy of 0.02" as asserted by Halley? Only a few scientists accepted this chal - lenge, but without adequate processing methods this was a hopeless undertaking. Parameter estimation methods had to be developed at first. The procedures used by Leonhard Euler and Achille-Pierre Dionis Duséjour were similar to modern methods and therefore superior to all other traditional methods. Their results were confirmed by Simon Newcomb at the end of the 1 9th century, thus proving the success of these campaigns.
    [Show full text]
  • Gotthold Eisenstein and Philosopher John
    Gotthold Eisenstein and Philosopher John Franz Lemmermeyer Abstract Before the recent publication of the correspondence between Gauss and Encke, nothing was known about the role that John Taylor, a cotton merchant from Liverpool, had played in the life of Gotthold Eisenstein. In this article, we will bring together what we have discovered about John Taylor’s life. Eisenstein’s Journey to England Gotthold Eisenstein belonged, together with Dirichlet, Jacobi and Kummer, to the generation after Gauss that shaped the theory of numbers in the mid- 19th century, and like Galois, Abel, Riemann, Roch and Clebsch, Eisenstein died young. Today, Eisenstein’s name can be found in the Eisenstein series, Eisenstein sums, the Eisenstein ideal, Eisenstein’s reciprocity law and in his irreducibility criterion, and he is perhaps best known for his ingenious proofs of the quadratic, cubic and biquadratic reciprocity laws. Eisenstein’s father Jo- hann Konstantin Eisenstein emigrated to England in 1840; Eisenstein and his mother followed in June 1842, although Eisenstein’s few remarks on this episode in his autobiography [3] belie the dramatic events that he experienced in Eng- land. On their journey to England, the Eisensteins passed through Hamburg; during the Great Fire in May 1842 about a third of the houses in the Altstadt had burned down. What we learn from Eisenstein’s account is that he was impressed by the sight of railroad lines running right under the foundations of houses (in London?) and by the Menai suspension bridge in Wales: Eisenstein mentions that he undertook six sea voyages, and that on one of them they sailed arXiv:2101.03344v1 [math.HO] 9 Jan 2021 under the tremendous suspension bridge in Anglesey, which was so high that the Berlin Palace would easily have fitted under its main arch.
    [Show full text]
  • Some Graphical Solutions of the Kepler Problem
    Some Graphical Solutions of the Kepler Problem Marc Frantz 1. INTRODUCTION. When a particle P moves in an inverse square acceleration field, its orbit is a conic section. If the acceleration is repulsive?that is, of the form /x||FP ||~3Fr for a positive constant ?jland a fixed point F?then the orbit is a branch of a hyperbola with F at the focus on the convex side of the branch. If the acceleration is attractive (?/x||TP\\~3FP), then the orbit is a circle with F at the center, an ellipse or parabola with F at a focus, or a branch of a hyperbola with F at the focus on the concave side of the branch. We refer to such orbits as Keplerian orbits after Johannes Kepler, who proposed them as models of planetary motion. It takes rather special conditions to set up circular or parabolic orbits, so it is proba bly safe to say that inNature most closed orbits are ellipses, and most nonclosed orbits are hyperbolas. Ironically, these are precisely the cases in which it is impossible to formulate the position of P as an elementary function of time t?the very thing we most want to know! Nevertheless, for any given time t it is possible to locate P using graphs of elemen tary functions, thereby achieving a partial victory. This endeavor has an interesting history in the case of elliptical orbits, where locating P is called the "Kepler problem." It involves a famous equation known as "Kepler's equation," which we discuss later. In his book Solving Kepler's Equation over Three Centuries Peter Colwell says [5, p.
    [Show full text]
  • Fischer, the Scots in Germany
    The Scots in Germany http://studienstelleog.de/download/ScotsGermany_Fischer.pdf The Scots in Germany - Preface http://studienstelleog.de/download/ScotsGermany_Fischer.pdf The Scots in Germany The Scots in Germany Being a contribution towards the history of the Scot abroad Preface by Th A Fischer (first published in 1902) My thanks for Gregory Lauder-Frost for making this book available to us. WHEN I several years ago commenced to write this book, voices were not wanting advising me to abandon the idea, chiefly on account of the vast area from which the material had to be gathered and the almost total want of preparatory inquiry into this particular branch of Scottish History. l Preface l Commerce and Trade - Part 1 When I nevertheless persevered in my task, though experiencing to the full the truth of those l Commerce and Trade - Part 2 Cassandra voices, it was owing not only to an interest which warmed with the increasing difficulties, l The Army - Part 1 but to the very kind and active help that friends of historical research both in Scotland and in l The Army - Part 2 Germany have afforded me in supplying copies of records or other sources of information, or in l The Church - Part 1 reading proofs, or in acting as guides through the labyrinths of their libraries. It would be too long to l The Church - Part 2 mention their names; my thanks are due to them all, in particular to the librarians and keepers of records in Edinburgh, Glasgow, Aberdeen, St Andrews, Fort Augustus, Dundee, and in half a l Statesman and Scholar hundred places in Sweden, Germany and Austria.
    [Show full text]
  • (Preprint) AAS 16-112 ENCKE-BETA PREDICTOR for ORION BURN
    (Preprint) AAS 16-112 ENCKE-BETA PREDICTOR FOR ORION BURN TARGETING AND GUIDANCE Shane Robinson,∗ Sara Scarritt,∗ and John L. Goodmany The state vector prediction algorithm selected for Orion on-board targeting and guidance is known as the Encke-Beta method. Encke-Beta uses a universal anomaly (beta) as the independent variable, valid for circular, elliptical, parabolic, and hy- perbolic orbits. The variable, related to the change in eccentric anomaly, results in integration steps that cover smaller arcs of the trajectory at or near perigee, when velocity is higher. Some burns in the EM-1 and EM-2 mission plans are much longer than burns executed with the Apollo and Space Shuttle vehicles. Burn length, as well as hyperbolic trajectories, has driven the use of the Encke-Beta nu- merical predictor by the predictor/corrector guidance algorithm in place of legacy analytic thrust and gravity integrals. INTRODUCTION On-board software tasks for on-orbit burn targeting, guidance, and navigation require the use of trajectory integrators to predict state vectors forward or backward in time. Burn targeting meth- ods and active guidance routines make extensive use of trajectory prediction algorithms. These predictions may be over time intervals ranging from tens of seconds to hours or even days. Such predictions require higher fidelity numerical integration schemes and higher order acceleration mod- els than very short time interval propagations cyclically executed at high rates, such as those found in the propagation phase of an on-board Kalman filter. A high fidelity state vector predictor may also be used to predict a state vector uplinked by Mission Control forward or backward in time to the current on-board time, so that the high rate short time interval propagator can be reinitialized.
    [Show full text]
  • 02. Solar System (2001) 9/4/01 12:28 PM Page 2
    01. Solar System Cover 9/4/01 12:18 PM Page 1 National Aeronautics and Educational Product Space Administration Educators Grades K–12 LS-2001-08-002-HQ Solar System Lithograph Set for Space Science This set contains the following lithographs: • Our Solar System • Moon • Saturn • Our Star—The Sun • Mars • Uranus • Mercury • Asteroids • Neptune • Venus • Jupiter • Pluto and Charon • Earth • Moons of Jupiter • Comets 01. Solar System Cover 9/4/01 12:18 PM Page 2 NASA’s Central Operation of Resources for Educators Regional Educator Resource Centers offer more educators access (CORE) was established for the national and international distribution of to NASA educational materials. NASA has formed partnerships with universities, NASA-produced educational materials in audiovisual format. Educators can museums, and other educational institutions to serve as regional ERCs in many obtain a catalog and an order form by one of the following methods: States. A complete list of regional ERCs is available through CORE, or electroni- cally via NASA Spacelink at http://spacelink.nasa.gov/ercn NASA CORE Lorain County Joint Vocational School NASA’s Education Home Page serves as a cyber-gateway to informa- 15181 Route 58 South tion regarding educational programs and services offered by NASA for the Oberlin, OH 44074-9799 American education community. This high-level directory of information provides Toll-free Ordering Line: 1-866-776-CORE specific details and points of contact for all of NASA’s educational efforts, Field Toll-free FAX Line: 1-866-775-1460 Center offices, and points of presence within each State. Visit this resource at the E-mail: [email protected] following address: http://education.nasa.gov Home Page: http://core.nasa.gov NASA Spacelink is one of NASA’s electronic resources specifically devel- Educator Resource Center Network (ERCN) oped for the educational community.
    [Show full text]
  • From William Hyde Wollaston to Alexander Von Humboldt
    This article was downloaded by: [Deutsches Museum] On: 15 February 2013, At: 08:42 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Annals of Science Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tasc20 From William Hyde Wollaston to Alexander von Humboldt - Star Spectra and Celestial Landscape Jürgen Teichmann a & Arthur Stinner b a Deutsches Museum and Ludwig-Maximilians-University, München, Germany b University of Manitoba, Winnipeg, Canada Version of record first published: 13 Feb 2013. To cite this article: Jürgen Teichmann & Arthur Stinner (2013): From William Hyde Wollaston to Alexander von Humboldt - Star Spectra and Celestial Landscape, Annals of Science, DOI:10.1080/00033790.2012.739709 To link to this article: http://dx.doi.org/10.1080/00033790.2012.739709 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • NASA News National Aeronautics and Space Administration Washington, D.C
    NASA News National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 CN r* IT! w to r^ For Release IMMEDIATE I i-f r~ o o =r CD c «- O O Press Kit PrOJGCt Solar Maximum Mission RELEASE NO: 80-16 CM O i-H IH (C «~. H O O W-H -H W +> -P (C (d •* S5 (j «! W SB pq-H EH C Contents M -H e VO r- I 0 as 0) General Release 1-7 cc o I Mission Objectives 8-9 (P K O. W PS tn The Spacecraft 9 (0 < CM jj 1^3 Mission Operations 9-10 i—i fe C Scientific Investigations 10-13 ^ (0 P3 B5 The Sun 13-15 1 rt w Sun-Earth Relationship 16 w ^ u > O -H Launch Vehicle 16-17 Q; co •*-> Launch Operations 17 l a: to Launch Support 17 «c U es in a o Major Launch Events. 18 rt » U }3^ f4 CU Solar Maximum Mission Team 19-20 — i-? rt Contractors 21 February 6, 1980 WNSANews National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 Nicholas Panagakos For Release: Headquarters, Washington, D.C. IMMEDIATE (Phone: 202/755-3680) James Lacy Goddard Space Flight Center, Greenbelt, Md. (Phone: 301/344-5565) RELEASE NO: 80-16 NASA SET TO LAUNCH SOLAR FLARE SATELLITE NASA is preparing to place in Earth orbit the first spacecraft designed specifically for the study of solar flares. The mission represents a major step toward a better understanding of the violent nature of the Sun and its effects on Earth.
    [Show full text]