32.Priyanka B. Gorde , Kalyani Kale, Manish A. Raskar

Total Page:16

File Type:pdf, Size:1020Kb

32.Priyanka B. Gorde , Kalyani Kale, Manish A. Raskar Human Journals Review Article March 2021 Vol.:20, Issue:4 © All rights are reserved by Priyanka B. Gorde et al. A Systemic Review on Oxazolidinones as Anti-Tubercular Agents and Antibacterial Agent Keywords: Anti-tubercular agents, Oxazolidinone, Linezolid, Sutezolid, SAR ABSTRACT Priyanka B. Gorde *, Kalyani Kale, Manish A. TB drug development pipeline represents varied structural Raskar classes of molecules. Oxazolidinones represent synthetic Department of Pharmaceutical Chemistry, Dr. antibacterial agents with a unique mechanism of action Vithalrao Vikhe Patil College of Pharmacy having a wide spectrum of activity, oral bioavailability, and Ahmednagar, India. well-established SAR. They act by inhibiting translation at the initiation phase of protein synthesis. Linezolid was the Submitted: 09 February 2021 first oxazolidinone to reach the market in the year 2000 for Revised : 28 February 2021 the treatment of methicillin-resistant staphylococcal and Accepted: 20 March 2021 vancomycin-resistant enterococcal infections. Oxazolidinones have shown very good anti-mycobacterial activities. Several oxazolidinones are currently in development for their possible use in TB therapy. Oxazolidinones are classified based on C-ring modifications. www.ijppr.humanjournals.com DuP-721 was the first oxazolidinone having good anti-TB activity. Linezolid, sutezolid and AZD5489 are in clinical devel- opment. Several other C-ring modifications have shown promising results. The usefulness of these oxazolidinones in drug-resistant TB is already established. Toxicity, especially myelosuppression, has been an im- important limiting factor for their development. Citation: Priyanka B. Gorde et al. Ijppr.Human, 2021; Vol. 20 (4): 448-478. 448 www.ijppr.humanjournals.com INTRODUCTION Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) [1], accounts for the death of 1.5 million people; 360, 000 of whom were Human Immunodeficiency Virus (HIV) positive and 9.0 million new cases in 2013 [2]. Latent TB infection in the Mtb infected (LTBI) people increases the possibility of reactivation of this deadly disease [3,4]. The current year 2015 marks the 132nd anniversary of Robert Koch’s discovery of the tubercle bacillus Mtb [5]. Most of the first-line drugs were discovered in the 1950s and 1960s. For nearly a half-century, TB patients lacked new drugs to be available for treatment until Bedaquiline was launched at the end of 2012, which was approved to treat multidrug-resistant tuberculosis (MDR-TB, resistant strains to isoniazid (INH) and rifampicin, RIF) [6]. The development of drug resistance, rise of multi- and extensively- drug resistant TB (MDR-TB and XDR-TB: more insusceptible to any fluoroquinolone and one of three injectable drugs) strains, and the long duration required for the treatment of TB, make it imperative to develop novel leads against TB. The devastating effect of HIV co-infection has led to an urgent need for the development of new, fast-acting, and more efficient anti-mycobacterial drugs. An ideal drug candidate is required to act on a novel target and also be effective against the resistant Mtb strains [7]. Current anti-TB drugs target bacterial cell wall synthesis, protein synthesis, and fatty acid synthesis [8]. The therapeutic regimen for the treatment of TB involves first-line drugs such as isoniazid (INH), rifampicin (R), pyrazinamide (Z), ethambutol (E), streptomycin (S), and rifabutin (Rfb), second-line drugs such as kanamycin (Km), amikacin (Amk), capreomycin (Cm), viomycin (Vim), ciprofloxacin (Cfx), levofloxacin (Lfx), ofloxacin (Ofx), para-aminosalicylic acid (Pas), D-cycloserine (Dcs), teridizone (Trd), ethionamide (Eto), prothionamide (Pto) and thioacetazone (Thz), and third-line drugs such as clofazimine (Cfz), amoxicillin plus clavulanate (Amx/Clv), linezolid (Lzd) in combination regimens to treat MDR-TB or XDR-TB [2,9,10]. Directly observed treatment short-course strategy (DOTS) provides a cure rate of > 95% for the treatment of drug-sensitive TB with initial treatment for two months with four drugs (INH, R, Z, and E) and subsequent four months treatment with two drugs (INH and R). Drug- resistant TB requires the use of second-line toxic drugs for a longer duration (18-24 months or more) of time. The coinfection of TB with HIV further complexes the problem leading to morbidity and mortality [11]. The currently employed drugs have many Citation: Priyanka B. Gorde et al. Ijppr.Human, 2021; Vol. 20 (4): 448-478. 449 www.ijppr.humanjournals.com potential side effects viz. Z causes hepato- toxicity and gout because of a decrease in uric acid secretion in urine, INH causes peripheral neuropathy in fast acetylators and hepatotoxicity in slow acetylators, RIF causes orange discoloration of body fluids such as lymph, saliva, lacrimal fluid, sputum, sweat, and urine because of dye characteristics and E causes optical neuritis or retrobulbolar neuritis, aminoglycosides causes ototoxicity and nephrotoxicity [8]. In total, none of the anti-TB drugs is devoid of hazardous side effects. This, in deed, enhances the need for the development of novel chemical entities and novel anti-tubercular agents. Apart from these, several classes of molecules are in different stages of development (Table 1) providing some promise [10]. This review highlights the progress made by oxazolidinones a new structural class of anti- biotic. First oxazolidinone linezolid was approved in the year 2000 for the treatment of methicillin-resistant staphylococcal and vancomycin-resistant enterococcal infections [12]. Since then there is spurred interest in research in this area [13,14]. Considering their promising activity against M. tuberculosis the search for molecules as potential anti-TB agents is pursued. This review highlights the developments in oxazolidinones as anti-TB agents, the only review highlighting these developments appeared in 2006 [15]. ANTI-TB DRUG PIPELINE New chemotherapeutics active against multidrug-resistant M. tuberculosis are urgently needed. Despite the urgent need for new anti-tubercular drugs, few are on the horizon. To combat the problem of emerging drug resistance, structurally unique chemical entities that inhibit new or novel targets will be required. The Novel Chemical Entities (NCEs) which have distinguished potential to be drug candidates for the treatment of TB are represented in (Table 1) with their chemical class, mode of action, in vitro activity, and current clinical status. These NCEs are represented in (Fig. 1) with their trivial names. TB Alliance with the help of the University of Auckland and University of Illinois- Chicago has developed nitroimidazoles such as PA-824 (1) and delamanid(OPC67683) (2) a new drug class for drug-sensitive and drug-resistant Mtb [16]. TBA-354 (3) is a next-generation nitroimidazole for TB treatment with demonstrated advantages over the first-generation compounds and entered clinical testing in 2015 [17]. Currently, in phase III clinical trial treatment of drug-sensitive TB in four months, a possible replacement of Citation: Priyanka B. Gorde et al. Ijppr.Human, 2021; Vol. 20 (4): 448-478. 450 www.ijppr.humanjournals.com E/INH by fluoroquinolone moxifloxacin (4) and E by fluoroquinolone gatifloxacin (5) is being established [18]. Bedaquiline (7) is a diarylquinoline class anti-TB drug approved by the US FDA for the treatment of MDR-TB [19]. It has been recognized as the first anti- TB drug to interfere with bacterial energy metabolism [20]. SQ109 (8) a 1,2- ethylenediamine derived from E through combinatorial synthesis is under clinical development [21]. A phase IIa clinical trial for LL3858 (10) a pyrrole derivative developed by Lupin Limited has shown the potential for the treatment of tuberculosis [22]. Linezolid or PNU-100766 (11), sutezolid or PNU-100480 (12), and AZD5847 (13) are the only oxazolidinones which have reached phase II of the clinical trial. AZD5847, a next-generation oxazolidinone, is having bactericidal action and has completed Phase I clinical trials [23]. Rifapentine has entered in a clinical trial, in 2008 with a view of the evaluation of antimicrobial activity and safety in which several doses of rifapentine are substituted for rifampin [17]. BDM31343 (15) has been evolved as an emerging drug candidate among 1,2,4-oxadiazoles and is currently under preclinical trial [24]. BTZ043 (16) has shown excellent whole cell-based activity (1 ng/mL) among nitrophenyl derivatives with a completely novel mechanism of action [25]. Various diversified NCEs too have the potential to become anti-mycobacterial drugs such as PBTZ169 (18), TBI- 166 (19), CPZEN-45 (20), SQ641 (21), Q203 (22), and 23 are under preclinical trial. Other NCEs such as 377790 (24), C215 (25), A039 (26), and AU1235 (27) have been identified as active anti-tubercular hits, and their respective biological targets are also well elaborated [26,27]. Table No. 1: Different chemical classes of NCEs for TB in clinical pipeline. In vitro Clinical Chemical Drug Activity Entry Mode of action Status [17] Refs. Class Candidate (MIC) Bactericidal action by 0.015-0.25 PA-824 (1) III [29] intracellular NO release[28] µg/mL TBA-354 (3) Same as that of PA 824 0.004 µM I [30] Delamanid 0.006-0.024 1 Nitroimidazole Inhibits mycolic acid (OPC67683) (2) µg/mL III [31] synthesis Citation: Priyanka B. Gorde et al. Ijppr.Human, 2021; Vol. 20 (4): 448-478. 451 www.ijppr.humanjournals.com Table 1) contd…. In vitro Clinical Chemical Drug Activity Entry Mode of action Status [17] Refs. Class Candidate (MIC) Moxifloxacin Inhibits
Recommended publications
  • WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/11 (2006.01) A61K 38/08 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2015/031213 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 15 May 2015 (15.05.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/000,43 1 19 May 2014 (19.05.2014) US kind of regional protection available): ARIPO (BW, GH, 62/129,746 6 March 2015 (06.03.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicants : GELLER, Bruce, L.
    [Show full text]
  • Oxazolidinones for TB
    Oxazolidinones for TB: Current Status and Future Prospects 12th International Workshop on Clinical Pharmacology of Tuberculosis Drugs London, UK 10 September 2019 Lawrence Geiter, PhD Disclosures • Currently contract consultant with LegoChem Biosciences, Inc., Daejeon, Korea (LCB01-0371/delpazolid) • Previously employed with Otsuka Pharmaceutical Development and Commercialization, Inc. (delamanid, OPC-167832, LAM assay) What are Oxazolidinones • A family of antimicrobials mostly targeting an early step in protein synthesis • Cycloserine technically oxazolidinone but 2-oxazolidinone different MOA and chemical properties • New generation oxazolidinones bind to both 50S subunit and 30S subunit • Linezolid (Zyvox) and Tedizolid (Sivestro) approved for drug resistant skin infections and community acquired pneumonia Cycloserine • Activity against TB demonstrated in non- clinical and clinical studies • Mitochondrial toxicity >21 days limits use in TB treatment Linezolid Developing Oxazolidinones for TB Compound Generic Brand Sponsor Development Status TB Code- Activity/Trials PNU-100766 Linezolid Zyvox Pfizer Multiple regimen Yes/Yes TR-201 Tedizolid Sivextro Merck Pre-clinical efficacy Yes/No PNU-100480 Sutezolid Pfizer Multiple regimen studies Sequella Yes/Yes (PanACEA) TB Alliance LCB01-0371 Delpazolid LegoChem Bio EBA trial recruitment completed Yes/Yes TBI-223 - Global Alliance SAD trial launched Yes/Yes AZD5847 Posizolid AstraZenica Completed EBA Yes/No RX-1741 Radezolid Melinta IND for vaginal infections ?/No RBX-7644 Ranbezolid Rabbaxy None found ?/No MRX-4/MRX-1 Contezolid MicuRx Skin infections Yes/No U-100592 Eperezolid ? No clinical trials ?/No PK of Oxazolidinones in Development for TB Steady State PK Parameters Parameter Linezolid 600 Delpazolid 800 mg QD2 mg QD3 Cmax (mg/L) 17.8 8.9 Cmin (mg/L) 2.43 0.1 Tmax (h) 0.87 0.5 T1/2 (h) 3.54 1.7 AUC0-24 (µg*h/mL) 84.5 20.1 1 MIC90 (µg/mL) 0.25 0.5 References 1.
    [Show full text]
  • Antibacterial Drugs
    Antibacterial drugs Iwona Smolarek, MD, PhD Department of Clinical Pharmacology The antibacterial drugs destroy or slow down the growth of bacteria They are widely used in medicine and dentistry. They are administered generally and locally, in prophylaxis and treatment. ANTIBIOTICS antimicrobial agents produced by microorganisms synthetic drugs designed based upon the structure of molecules produced in nature by microorganisms CHEMOTHERAPEUTIC AGENTS antimicrobial agents synthesized in the laboratory Colloquially – all antibacterial agents are named antibiotics Antibiotics classification and mechanism of action Antibiotics classification bacteriostatic – slow growth or reproduction of bacteria (macrolides, lincosamides, tetracyclines, sulfonamides and chloramphenicol) bactericidal - kill bacteria (β-lactams, vancomycin, daptomycin, fluoroquinolones, metronidazole, co-trimoxazole) The classification is in part arbitrary because most bacteriostatic drugs are bactericidal at high concentrations, under certain incubation conditions in vitro, and against some bacteria. Β - lactams inhibit bacterial growth by interfering with bacterial cell wall synthesis - bactericidal this group of antibiotic include some groups such as penicillins, cephalosporins, monobactams, carbapenems, and β – lactamase inhibitors Penicillins - classification The penicillin group include: prototype: penicillin G, penicillin V penicillinase – resistant: nafcillin, methilcillin, oxacillin, cloxacillin, dicloxacillin extendend – spectrum: ampicillin, amoxicillin,
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0346294 A1 SENGUPTA Et Al
    US 2016.0346294A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0346294 A1 SENGUPTA et al. (43) Pub. Date: Dec. 1, 2016 (54) TREATMENTS FOR RESISTANT ACNE Publication Classification (71) Applicant: VYOME BIOSCIENCES PVT. LTD., (51) Int. Cl. New Delhi (IN) A6II 3/55 (2006.01) A63L/92 (2006.01) (72) Inventors: Shiladitya SENGUPTA, Delhi (IN); A6II 47/08 (2006.01) Suresh Rameshlal CHAWRAI, Pune A6II 47/8 (2006.01) (IN); Shamik GHOSH, Delhi (IN); C07D 53/04 (2006.01) Sumana GHOSH, Delhi (IN); Nilu A6II 47/38 (2006.01) JAIN, New Delhi (IN); Suresh A6II 47/32 (2006.01) SADHASIVAM, Salem (IN); Richard A6II 47/36 (2006.01) BUCHTA, Melbourne (AU); Anamika A6II 47/02 (2006.01) BHATTACHARYYA, Delhi (IN) A6II 45/06 (2006.01) A6II 47/10 (2006.01) (73) Assignee: VYOME BIOSCIENCES PVT. LTD., (52) U.S. Cl. New Delhi (IN) CPC ............... A6 IK3I/55 (2013.01); A61K 45/06 (2013.01); A61K 31/192 (2013.01); A61 K (21) Appl. No.: 15/115,143 47/08 (2013.01); A61K 47/183 (2013.01); A61K 47/10 (2013.01); A61K 47/38 (2013.01); (22) PCT Fed: Jan. 29, 2015 A61K 47/32 (2013.01); A61K 47/36 (2013.01); PCT No.: PCT/N2O15/000057 A61K 47/02 (2013.01); C07D 513/04 (86) (2013.01) S 371 (c)(1), (2) Date: Jul. 28, 2016 (57) ABSTRACT (30) Foreign Application Priority Data The present disclosure relates generally to novel molecules, compositions, and formulations for treatment of bacterial Jan. 29, 2014 (IN) ............................. 269/DELA2014 infections in general and more specifically to bacterial Nov.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] http://bmjopen.bmj.com/ on September 26, 2021 by guest. Protected copyright. BMJ Open BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from Treatment of stable chronic obstructive pulmonary disease: a protocol for a systematic review and evidence map Journal: BMJ Open ManuscriptFor ID peerbmjopen-2018-027935 review only Article Type: Protocol Date Submitted by the 15-Nov-2018 Author: Complete List of Authors: Dobler, Claudia; Mayo Clinic, Evidence-Based Practice Center, Robert D.
    [Show full text]
  • Clinical Presentation and Treatment of Orthopaedic Implant- Associated Infection
    Review Click here for more articles from the symposium doi: 10.1111/joim.12233 Clinical presentation and treatment of orthopaedic implant- associated infection W. Zimmerli From the Interdisciplinary Unit of Orthopaedic Infections, Kantonsspital Baselland, University of Basel, Liestal, Switzerland Abstract. Zimmerli W (Interdisciplinary Unit of agent that is effective against biofilm bacteria, is Orthopaedic Infections, Kantonsspital Baselland, required. Rifampicin is an example of an antibiotic University of Basel, Liestal, Switzerland). Clinical with these properties against staphylococci. How- presentation and treatment of orthopaedic ever, to avoid the emergence of resistance, rifam- implant-associated infection (Review). J Intern picin must always be combined with another Med 2014; 276: 111–119. antimicrobial agent. With this novel treatment approach, orthopaedic implant-associated infec- Orthopaedic implants are highly susceptible to tion is likely to be eradicated in up to 80–90% of infection. The aims of treatment of infection asso- patients. Because most antibiotics have a limited ciated with internal fixation devices are fracture effect against biofilm infections, novel prophylactic consolidation and prevention of chronic osteomy- and therapeutic options are needed. Surface coat- elitis. Complete biofilm eradication is not the ing with antimicrobial peptides that reduce bacte- primary goal, as remaining adherent microorgan- rial attachment and biofilm formation can isms can be removed with the device after fracture potentially prevent implant-associated infection. consolidation. By contrast, in periprosthetic joint In addition, quorum-sensing inhibitors are a novel infection (PJI), biofilm elimination is required. therapeutic option against biofilm infections. Surgical treatment of PJI includes debridement with retention, one- or two-stage exchange and Keywords: biofilm, fluoroquinolone, internal fixation, removal without reimplantation.
    [Show full text]
  • Aerosoltherapievorricht
    (19) TZZ ¥__Z_T (11) EP 2 361 108 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: (2006.01) Hinweises auf die Patenterteilung: A61M 15/00 21.08.2013 Patentblatt 2013/34 (86) Internationale Anmeldenummer: PCT/EP2009/066599 (21) Anmeldenummer: 09801187.7 (87) Internationale Veröffentlichungsnummer: (22) Anmeldetag: 08.12.2009 WO 2010/066714 (17.06.2010 Gazette 2010/24) (54) AEROSOLTHERAPIEVORRICHTUNG AEROSOL THERAPY DEVICE DISPOSITIF D’AÉROSOLTHÉRAPIE (84) Benannte Vertragsstaaten: • HETZER, Uwe AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 81369 München (DE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • LÖNNER, Mihaela PT RO SE SI SK SM TR 85464 Eicherloh-Finsing (DE) (30) Priorität: 09.12.2008 DE 102008054431 (74) Vertreter: HOFFMANN EITLE Patent- und Rechtsanwälte (43) Veröffentlichungstag der Anmeldung: Arabellastrasse 4 31.08.2011 Patentblatt 2011/35 81925 München (DE) (73) Patentinhaber: PARI Pharma GmbH (56) Entgegenhaltungen: 82319 Starnberg (DE) WO-A1-00/12161 WO-A1-2006/078900 WO-A2-03/022332 DE-B3-102005 006 374 (72) Erfinder: DE-C1- 19 953 317 US-A- 5 584 285 • GALLEM, Thomas US-A1- 2001 013 341 81371 München (DE) Anmerkung: Innerhalb von neun Monaten nach Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents im Europäischen Patentblatt kann jedermann nach Maßgabe der Ausführungsordnung beim Europäischen Patentamt gegen dieses Patent Einspruch einlegen. Der Einspruch gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen). EP 2 361 108 B1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 361 108 B1 2 Beschreibung [0004] Dies ist von besonderer Bedeutung bei Anwen- dern bei denen sich eine Verschlechterung des Zustands [0001] Die vorliegende Erfindung betrifft eine Aerosol- der Lunge und damit eine Veränderung des Inhalations- therapievorrichtung mit den Merkmalen des Oberbegriffs manövers von einer zur nächsten Inhalation einstellen.
    [Show full text]
  • CHAPTER'i SECTION A: Introduction to Tuberculosis and the Drugs Available for Treatment
    CHAPTER'I SECTION A: Introduction to Tuberculosis and the drugs available for treatment. Chapter I, Section A History of Tuberculosis The truth, tuberculosis (TB) is a communicable disease caused by infection with the tubercle bacillus^ has been established by Robert Koch in the year 1882. Although humankind affliction with TB date backs to at least 5400" years, as evidenced by ancient mummified remains, genetic analysis of the Mycobacterium tuberculosis (Mtb) complex suggests that the common progenitor has infected our hominid ancestors since eons. Unabatedly Mtb has parasitized the human host over ages with its complicated and dynamic series of interaction. Nearly l/S'** of world's population has been infected with Mtb. Globally 9.2 million new cases and 1.7 million deaths occur every year albeit widespread vaccination and chemotherapy. While large chunk of new cases are reported from southeast Asia, the western pacific,^ 95% of all cases are from developing world. The incidence of HIV has refueled the mortality rate among TB cases as it promotes the infection to active clinical disease; While TB accelerates HIV viral replication causing progression to AIDS. Further worsening of the situation was the occurrence of an estimated 49000 new multi-drug resistant tuberculosis (MDR-TB) and extensively drug resistant tuberculosis PCDR-TB) cases every year according to a Global Drug Resistance Surveillance report.'' The Tubercle Bacillus The genus composition of fast growing soil microbes and slow growing pathogens including Mtb, Mycobacterium leprae, Mycobacterium bovis and Mycobacterium marinum constitute the rod shaped mycobacteria. With the exceptions of M microti and live- attenuated vaccine strain M bovis bacille Calmette-Guerin (BCG)' all of the slightly genetical variants of Mtb complex can cause disease in immuno­ competent humans, Mtb being the most important pathogen of Homo sapiens.
    [Show full text]
  • ( 12 ) United States Patent
    US010391098B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 391, 098 B2 Geller et al. (45 ) Date of Patent: * Aug . 27 , 2019 ( 54 ) ANTISENSE ANTIBACTERIAL COMPOUNDS 5 ,698 ,685 A 12 / 1997 Summerton et al . 6 , 245 , 747 B1 6 / 2001 Porter et al. AND METHODS 6 , 965, 025 B2 11/ 2005 Gaarde et al. 6 , 969 ,400 B2 11 /2005 Rhee et al. (71 ) Applicants :Oregon State University , Corvallis , 7 ,625 ,873 B2 * 12 /2009 Geller . .. C07F 9 /65583 OR (US ) ; Board of Regents , The 435 /471 University of Texas System , Austin , 7 ,790 ,694 B2 9 /2010 Geller et al. 8 , 067 , 571 B2 11 / 2011 Weller et al. TX (US ) 8 , 076 ,476 B2 12 / 2011 Reeves et al. 8 , 299 , 206 B2 10 / 2012 Fox et al. (72 ) Inventors : Bruce L . Geller, Corvallis , OR (US ) ; 8 , 314 ,072 B2 11 / 2012 Geller et al. David Greenberg , Coppell , TX (US ) 8 , 536 , 147 B2 * 9 /2013 Weller .. A61K 48 / 00 514 /44 A ( 73 ) Assignees: Board of Regents , The University of 9 , 249 , 243 B2 * 2 / 2016 Weller . A61K 48 / 00 Texas System , Austin , TX (US ) ; 9 ,790 ,495 B2 10 /2017 Geller et al . Oregon State University , Corvallis , 2004 / 0029129 AL 2 / 2004 Wang et al. 2005 / 0288246 AL 12 / 2005 Iversen et al. OR (US ) 2006 / 0241075 Al 10 / 2006 McSwiggen 2006 /0270621 AL 11 /2006 Christiano ( * ) Notice : Subject to any disclaimer , the term of this 2007 /0049542 A1 3 / 2007 Geller et al . patent is extended or adjusted under 35 2008 / 0194463 Al 8 / 2008 Weller et al .
    [Show full text]
  • 6-Veterinary-Medicinal-Products-Criteria-Designation-Antimicrobials-Be-Reserved-Treatment
    31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]