The Isoprenoid Alcohol Pathway, a Synthetic Route for Isoprenoid Biosynthesis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Phase I Pharmacokinetic Trial of Perillyl Alcohol (NSC 641066) in Patients with Refractory Solid Malignancies1
Vol. 6, 3071–3080, August 2000 Clinical Cancer Research 3071 Phase I Pharmacokinetic Trial of Perillyl Alcohol (NSC 641066) in Patients with Refractory Solid Malignancies1 Gary R. Hudes,2 Christine E. Szarka, mononuclear cells obtained from patients treated at the Andrea Adams, Sulabha Ranganathan, highest dose level. The metabolites PA and DHPA did not ras Robert A. McCauley, Louis M. Weiner, change expression or isoprenylation of p21 in MCF-7 breast or DU145 prostate carcinoma cells at concentra- Corey J. Langer, Samuel Litwin, Gwen Yeslow, tions that exceeded those achieved in patient plasma after Theresa Halberr, Mingxin Qian, and POH treatment. We conclude that POH at 1600–2100 James M. Gallo mg/m2 p.o. three times daily is well tolerated on a 14-day Departments of Medical Oncology [G. R. H., C. E. S., S. R., R. A. M., on/14-day off dosing schedule. Inhibition of p21ras func- L. M. W., C. J. L., G. Y., T. H.], Pharmacology [A. A., M. Q., tion in humans is not likely to occur after POH adminis- J. M. G.], and Biostatistics [S. L.], Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 tration at safe doses of the present oral formulation. ABSTRACT INTRODUCTION Perillyl alcohol (POH) is a monoterpene with anti- The monoterpenes are a diverse class of isoprenoid carcinogenic and antitumor activity in murine tumor molecules derived from the anabolism of acetate by the models. Putative mechanisms of action include activation mevalonic acid branch biosynthetic pathways of plants. d- of the transforming growth factor  pathway and/or in- Limonene, a major component of orange peel oil and the hibition of p21ras signaling, leading to differentiation or prototype monoterpene in carcinogenesis studies, is formed apoptosis. -
PRODUCT INFORMATION Geranyl Pyrophosphate (Triammonium Salt) Item No
PRODUCT INFORMATION Geranyl Pyrophosphate (triammonium salt) Item No. 63320 CAS Registry No.: 116057-55-7 Formal Name: 3E,7-dimethyl-2,6-octadienyl- diphosphoric acid, triammonium salt Synonyms: GDP, Geranyl Diphosphate, GPP MF: C10H20O7P2 · 3NH3 FW: 365.3 O O Purity: ≥90% (NH +) – O P O P O Supplied as: A solution in methanol 4 3 Storage: -20°C O– O– Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Geranyl pyrophosphate (triammonium salt) is supplied as a solution in methanol. To change the solvent, simply evaporate the methanol under a gentle stream of nitrogen and immediately add the solvent of choice. A stock solution may be made by dissoving the geranyl pyrophosphate (triammonium salt) in the solvent of choice. Geranyl pyrophosphate (triammonium salt) is slightly soluble in water. Description Geranyl pyrophosphate is an intermediate in the mevalonate pathway. It is formed from dimethylallyl pyrophosphate (DMAPP; Item No. 63180) and isopentenyl pyrophosphate by geranyl pyrophosphate synthase.1 Geranyl pyrophosphate is used in the biosynthesis of farnesyl pyrophosphate (Item No. 63250), geranylgeranyl pyrophosphate (Item No. 63330), cholesterol, terpenes, and terpenoids. Reference 1. Dorsey, J.K., Dorsey, J.A. and Porter, J.W. The purification and properties of pig liver geranyl pyrophosphate synthetase. J. Biol. Chem. 241(22), 5353-5360 (1966). WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. -
Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C. -
126.-In-Vitro-Prototyping-Of-Limonene-Biosynthesis.Pdf
Metabolic Engineering 61 (2020) 251–260 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/meteng In vitro prototyping of limonene biosynthesis using cell-free protein synthesis T ∗ Quentin M. Dudley1, Ashty S. Karim, Connor J. Nash, Michael C. Jewett Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA ARTICLE INFO ABSTRACT Keywords: Metabolic engineering of microorganisms to produce sustainable chemicals has emerged as an important part of Cell-free metabolic engineering the global bioeconomy. Unfortunately, efforts to design and engineer microbial cell factories are challenging Limonene because design-build-test cycles, iterations of re-engineering organisms to test and optimize new sets of enzymes, iPROBE are slow. To alleviate this challenge, we demonstrate a cell-free approach termed in vitro Prototyping and Rapid Cell-free metabolic pathway prototyping Optimization of Biosynthetic Enzymes (or iPROBE). In iPROBE, a large number of pathway combinations can be Cell-free protein synthesis rapidly built and optimized. The key idea is to use cell-free protein synthesis (CFPS) to manufacture pathway Synthetic biology enzymes in separate reactions that are then mixed to modularly assemble multiple, distinct biosynthetic path- ways. As a model, we apply our approach to the 9-step heterologous enzyme pathway to limonene in extracts from Escherichia coli. In iterative cycles of design, we studied the impact of 54 enzyme homologs, multiple enzyme levels, and cofactor concentrations on pathway performance. In total, we screened over 150 unique sets of enzymes in 580 unique pathway conditions to increase limonene production in 24 h from 0.2 to 4.5 mM (23–610 mg/L). -
• Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
• Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo. -
Download File
Combined Biosynthetic and Synthetic Production of Valuable Molecules: A Hybrid Approach to Vitamin E and Novel Ambroxan Derivatives Bertrand T. Adanve Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 © 2015 Bertrand T. Adanve All Rights Reserved ABSTRACT Combined Biosynthetic and Synthetic Production of Valuable Molecules: A Hybrid Approach to Vitamin E and Novel Ambroxan Derivatives Bertrand T. Adanve Chapter 1. Introduction Synthetic chemistry has played a pivotal role in the evolution of modern life. More recently, the emerging field of synthetic biology holds the promise to bring about a paradigm shift with designer microbes to renewably synthesize complex molecules in a fraction of the time and cost. Still, given nature’s virtuosity at stitching a staggering palette of carbon frameworks with ease and synthetic chemistry’s superior parsing powers to access a greater number of unnatural end products, a hybrid approach that leverages the respective strengths of the two fields could prove advantageous for the efficient production of valuable natural molecules and their analogs. To demonstrate this approach, from biosynthetic Z,E-farnesol, we produced a library of novel analogs of the commercially important amber fragrance Ambrox®, including the first synthetic patchouli scent. Likewise, we produced the valuable tocotrienols from yeast-produced geranylgeraniol in a single step, the first such process of its kind. The novel acid catalyst system that allowed for this unique regioselective cyclization holds promise as an asymmetric proton transfer tool and could open the door to facile asymmetric synthesis of vitamin E and other molecules. -
Update of the LIPID MAPS Comprehensive Classification System for Lipids1
Update of the LIPID MAPS comprehensive classification system for lipids1 † Eoin Fahy,* Shankar Subramaniam, Robert C. Murphy,§ Masahiro Nishijima,** †† ††† Christian R. H. Raetz, Takao Shimizu,§§ Friedrich Spener,*** Gerrit van Meer, Michael J. O. Wakelam,§§§ and Edward A. Dennis2,**** † San Diego Supercomputer Center,* Department of Bioengineering, and Department of Chemistry and Biochemistry and Department of Pharmacology of the School of Medicine,**** University of California, San Diego, La Jolla, CA 92093-0505; Department of Pharmacology,§ University of Colorado Denver, Aurora, CO 80045-0598; National Institute of Health Sciences,** Setagaya-ku, Tokyo 158-8501, Japan; Department †† of Biochemistry, Duke University Medical Center, Durham, NC 27710; Department of Biochemistry and Molecular Biology,§§ Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Molecular Biosciences,*** University of Graz, 8010 Graz, Austria; Bijvoet Center and Institute of ††† Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands; and The Babraham Institute,§§§ Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom Abstract In 2005, the International Lipid Classification Nomenclature Committee (ILCNC) developed a “Com- and Nomenclature Committee under the sponsorship of prehensive Classification System for Lipids” that was pub- the LIPID MAPS Consortium developed and established a lished in 2005 (1). For the purpose of classification, we “ ” Comprehensive Classification System for Lipids based define lipids as hydrophobic or amphipathic small mole- on well-defined chemical and biochemical principles and cules that may originate entirely or in part by carbanion- using an ontology that is extensible, flexible, and scalable. This classification system, which is compatible with contem- based condensations of thioesters (fatty acyls, glycerolipids, porary databasing and informatics needs, has now been ac- glycerophospholipids, sphingolipids, saccharolipids, and cepted internationally and widely adopted. -
Menthol Smokers: Metabolomic Profiling and Smoking Behavior
Published OnlineFirst September 14, 2016; DOI: 10.1158/1055-9965.EPI-16-0124 Research Article Cancer Epidemiology, Biomarkers Menthol Smokers: Metabolomic Profiling & Prevention and Smoking Behavior Ping-Ching Hsu1,2, Renny S. Lan1, Theodore M. Brasky1, Catalin Marian1,3, Amrita K. Cheema4, Habtom W. Ressom4, Christopher A. Loffredo4, Wallace B. Pickworth5, and Peter G. Shields1 Abstract Background: The use of menthol in cigarettes and mar- tial least squares-discriminant analysis (PLS-DA) was carried keting is under consideration for regulation by the FDA. out for the classification of metabolomics profiles. However, the effects of menthol on smoking behavior and Results: MG boost was positively correlated with CO boost, carcinogen exposure have been inconclusive. We previously nicotine boost, average puff volume, puff duration, and total reported metabolomic profiling for cigarette smokers, and smoke exposure. Classification using PLS-DA, MG was the top novelly identified a menthol-glucuronide (MG) as the most metabolite discriminating metabolome of menthol versus non- significant metabolite directly related to smoking. Here, MG menthol smokers. Among menthol smokers, 42 metabolites were is studied in relation to smoking behavior and metabolomic significantly correlated with MG boost, which linked to cellular profiles. functions, such as of cell death, survival, and movement. Methods: This is a cross-sectional study of 105 smokers who Conclusions: Plasma MG boost is a new smoking behavior smoked two cigarettes in the laboratory one hour apart. Blood biomarker that may provide novel information over self-reported nicotine, MG, and exhaled carbon monoxide (CO) boosts were use of menthol cigarettes by integrating different smoking mea- determined (the difference before and after smoking). -
Redalyc.Degradation of Citronellol, Citronellal and Citronellyl Acetate By
Electronic Journal of Biotechnology E-ISSN: 0717-3458 [email protected] Pontificia Universidad Católica de Valparaíso Chile Tozoni, Daniela; Zacaria, Jucimar; Vanderlinde, Regina; Longaray Delamare, Ana Paula; Echeverrigaray, Sergio Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 Electronic Journal of Biotechnology, vol. 13, núm. 2, marzo, 2010, pp. 1-7 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=173313806002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.13 No.2, Issue of March 15, 2010 © 2010 by Pontificia Universidad Católica de Valparaíso -- Chile Received April 24, 2009 / Accepted November 6, 2009 DOI: 10.2225/vol13-issue2-fulltext-8 RESEARCH ARTICLE Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 Daniela Tozoni Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Jucimar Zacaria Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Regina Vanderlinde Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Ana Paula Longaray Delamare Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Sergio Echeverrigaray* Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil E-mail: [email protected] Financial support: COREDES/FAPERGS, and D. -
Natural Isoprenoids Are Able to Reduce Inflammation in a Mouse
0031-3998/08/6402-0177 Vol. 64, No. 2, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Natural Isoprenoids are Able to Reduce Inflammation in a Mouse Model of Mevalonate Kinase Deficiency ANNALISA MARCUZZI, ALESSANDRA PONTILLO, LUIGINA DE LEO, ALBERTO TOMMASINI, GIULIANA DECORTI, TARCISIO NOT, AND ALESSANDRO VENTURA Department of Reproductive and Developmental Sciences [A.M., L.L., A.T., TN, A.V.], Department of Biomedical Sciences [G.D.], University of Trieste, 34137 Trieste, Italy; Paediatric Division [A.P., A.T., T.N., A.V.], Institute of Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy ABSTRACT: Mevalonate kinase deficiency (MKD) is a rare ataxia, cerebellar atrophy, psychomotor retardation, and may disorder characterized by recurrent inflammatory episodes and, in die in early childhood (1). most severe cases, by psychomotor delay. Defective synthesis of HIDS patients usually are treated with anti-inflammatory isoprenoids has been associated with the inflammatory phenotype drugs and in particular corticosteroids; thalidomide is also in these patients, but the molecular mechanisms involved are still used but its effect is limited (2). In most severe cases, patients poorly understood, and, so far, no specific therapy is available for may benefit from treatment with biologic agents such as this disorder. Drugs like aminobisphosphonates, which inhibit the etanercept and anakinra (1,3–5). No treatment has been mevalonate pathway causing a relative defect in isoprenoids proven effective in curing the neurological symptoms in se- synthesis, have been also associated to an inflammatory pheno- type. Recent data asserted that cell inflammation could be reversed vere cases of MKD. -
ISOLATION of GERANIOL from RHODINOL by USING PDC REAGENT Nahso3 and Nabh4
The 2nd International Conference on Chemical Sciences Proceeding ISSN NO. 1410-8313 Yogyakarta, October 14-16th, 2010 ISOLATION OF GERANIOL FROM RHODINOL BY USING PDC REAGENT NaHSO3 AND NaBH4 Zaina Mukhia Bintan, Priatmoko1,*), and Hardono Sastrohamidjojo*) 1 Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia * Corresponding author, tel/fax : +62274545188 ABSTRACT Isolation geraniol from the rhodinol have been coducted by using PDC (pyridinium dichromate) reagent, NaHSO3 and NaBH4. The prosses consits of four steps : first step was rhodinol to get the high grade (it are compare between citronella oil from sample A, sample B and sample C, second step was the oxidation of rhodinol by using PDC, third step was separation of citral from citronellol by using sodium bisulfit, and the last step was reduction of citral to geraiol by using NaBH4 in etanol. The higher grade rhodinol was isolated from citronella oil of sample with purity 29.03%. The rhodinol wich used in this research was product of the third fraction redistillation of distillate the second fraction citronella oil, with grade of rhodinol was 90.55%. The oxidation of rhodinol by using PDC, could selectively oxidize geraniol become citral, whereas nothing change with citronellol. The product of oxidation was mixture of citral and citronellol, yellow liquid with fragnance odor, weight : 0.8 g. The geraniol can be obtained from reduction geraniol by using NaBH4 in ethanol. Product of reduction was colourless liquid, with fragnance odor, weight : 0.4 g. The product was analyzed by using GC and infrared spectrometer. Keywords: geraniol, citral, pyridinium dichromate INTRODUCTION Schmidts (1979 have also made the reagent to oxidase alcohol (primary, secondary and so he essential oil is a natural product that on) become the carbonyl compound. -
Biosynthesis of Abscisic Acid by the Direct Pathway Via Ionylideneethane in a Fungus, Cercospora Cruenta
Biosci. Biotechnol. Biochem., 68 (12), 2571–2580, 2004 Biosynthesis of Abscisic Acid by the Direct Pathway via Ionylideneethane in a Fungus, Cercospora cruenta y Masahiro INOMATA,1 Nobuhiro HIRAI,2; Ryuji YOSHIDA,3 and Hajime OHIGASHI1 1Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 2International Innovation Center, Kyoto University, Kyoto 606-8501, Japan 3Department of Agriculture Technology, Toyama Prefectural University, Toyama 939-0311, Japan Received August 11, 2004; Accepted September 12, 2004 We examined the biosynthetic pathway of abscisic Key words: Cercospora cruenta; abscisic acid; allofar- acid (ABA) after isopentenyl diphosphate in a fungus, nesene; -ionylideneethane; all-E-7,8-dihy- Cercospora cruenta. All oxygen atoms at C-1, -1, -10, and dro- -carotene -40 of ABA produced by this fungus were labeled with 18 18 O from O2. The fungus did not produce the 9Z- A sesquiterpenoid, abscisic acid (ABA, 1), is a plant carotenoid possessing -ring that is likely a precursor hormone which regulates seed dormancy and induces for the carotenoid pathway, but produced new sesqui- dehydration tolerance by reducing the stomatal aper- terpenoids, 2E,4E- -ionylideneethane and 2Z,4E- -ion- ture.1) ABA is biosynthesized by some phytopathogenic ylideneethane, along with 2E,4E,6E-allofarnesene. The fungi in addition to plants,2) but the biosynthetic origin fungus converted these sesquiterpenoids labeled with of isopentenyl diphosphate (IDP) for fungal ABA is 13C to ABA, and the incorporation ratio of 2Z,4E- - different from that for plant ABA (Fig. 1). Fungi use ionylideneethane was higher than that of 2E,4E- - IDP derived from the mevalonate pathway for ABA, ionylideneethane.