Precision Tests and Fine Tuning in Twin Higgs Models

Total Page:16

File Type:pdf, Size:1020Kb

Precision Tests and Fine Tuning in Twin Higgs Models PHYSICAL REVIEW D 96, 095036 (2017) Precision tests and fine tuning in twin Higgs models † ‡ ∥ Roberto Contino,1,* Davide Greco,2, Rakhi Mahbubani,3, Riccardo Rattazzi,2,§ and Riccardo Torre2, 1Scuola Normale Superiore and INFN, Pisa IT-56125, Italy 2Theoretical Particle Physics Laboratory, Institute of Physics, EPFL, Lausanne CH-1015, Switzerland 3Theoretical Physics Department, CERN, Geneva CH-1211, Switzerland (Received 27 February 2017; revised manuscript received 7 November 2017; published 29 November 2017) We analyze the parametric structure of twin Higgs (TH) theories and assess the gain in fine tuning which they enable compared to extensions of the standard model with colored top partners. Estimates show that, at least in the simplest realizations of the TH idea, the separation between the mass of new colored particles and the electroweak scale is controlled by the coupling strength of the underlying UV theory, and that a parametric gain is achieved only for strongly-coupled dynamics. Motivated by this consideration we focus on one of these simple realizations, namely composite TH theories, and study how well such constructions can reproduce electroweak precision data. The most important effect of the twin states is found to be the infrared contribution to the Higgs quartic coupling, while direct corrections to electroweak observables are subleading and negligible. We perform a careful fit to the electroweak data including the leading- logarithmic corrections to the Higgs quartic up to three loops. Our analysis shows that agreement with electroweak precision tests can be achieved with only a moderate amount of tuning, in the range 5%–10%, in theories where colored states have mass of order 3–5 TeVand are thus out of reach of the LHC. For these levels of tuning, larger masses are excluded by a perturbativity bound, which makes these theories possibly discoverable, hence falsifiable, at a future 100 TeV collider. DOI: 10.1103/PhysRevD.96.095036 I. INTRODUCTION where each Λ represents the physical cutoff scale in a different sector of the theory. The above equation is simply The principle of naturalness offers arguably the main dictated by symmetry: dilatations (dimensional analysis) motivation for exploring physics at around the weak scale. determine the scale dependence and the broken shift According to naturalness, the plausibility of specific symmetry of the Higgs field sets the coupling dependence. parameter choices in quantum field theory must be assessed Unsurprisingly, these contributions arise in any explicit UV using symmetries and selection rules. When viewing the completion of the SM, although in some cases there may be standard model (SM) as an effective field theory valid other larger ones. According to Eq. (1.1), any given (large) below a physical cutoff scale and considering only the value of the scale of new physics can be associated with a known interactions of the Higgs boson, we expect the (small) number ϵ, which characterizes the accuracy at following corrections to its mass.1 which the different contributions to the mass must cancel 2 2 2 among themselves, in order to reproduce the observed 3y 9g2 3g1 3λ δm2 ¼ t Λ2 − Λ2 − Λ2 − h Λ2 þÁÁÁ; ≃ 125 h 4π2 t 32π2 g2 32π2 g1 8π2 h value mh GeV. As the largest loop factor is due to the top Yukawa coupling, according to Eq. (1.1) the scale ð1:1Þ Λ 2 NP where new states must first appear is related to mh and ϵ via *[email protected] rffiffiffi † 4π2 2 1 [email protected] Λ2 ∼ mh ⇒ Λ ∼ 0 45 ‡ NP 2 × ϵ NP . ϵTeV: ð1:2Þ [email protected] 3yt §[email protected][email protected] pffiffiffi The dimensionless quantity ϵ measures how finely-tuned 1 2 2 2 λ 2 2 2 174 2 We take mh ¼ mH ¼ hv = with hHi¼v= ¼ GeV, Λ mh is, given NP, and can therefore be regarded as a which corresponds to a potential 2 measure of the tuning. Notice that the contributions fromffiffiffi g2 λ λ Λ 1 1 pϵ − 2 2 h 4 and h in Eq. (1.1) ffiffifficorrespond to NP ¼ . TeV= and V ¼ mHjHj þ 4 jHj : p ΛNP ¼ 1.3 TeV= ϵ, respectively. Although not signifi- cantly different from the relation in the top sector, these Published by the American Physical Society under the terms of scales would still be large enough to push new states out of the Creative Commons Attribution 4.0 International license. ϵ ∼ 0 1 Further distribution of this work must maintain attribution to direct reach of the LHC for . the author(s) and the published article’s title, journal citation, Indeed, for a given ϵ, Eq. (1.2) only provides an upper and DOI. bound for ΛNP; in the more fundamental UV theory there 2470-0010=2017=96(9)=095036(31) 095036-1 Published by the American Physical Society ROBERTO CONTINO et al. PHYSICAL REVIEW D 96, 095036 (2017) 2 can in principle exist larger corrections to mh which are not coupling. As discussed in the next section, depending on captured by Eq. (1.1). In particular, in the minimal super- the structure of the model, gSM can be either the top Yukawa symmetric SM (MSSM) with high-scale mediation of the or the square root of the Higgs quartic. As a result, given the δ 2 tuning ϵ, the squared mass of the new colored and charged soft terms, mh in Eq. (1.1) is logarithmically enhanced by RG evolution above the weak scale. In that case, Eq. (1.2) is states is roughly given by modified as follows: 4π2 m2 g 2 m2 ∼ h à : : 2π2 1 2 à 3 2 × ϵ × ð1 4Þ Λ2 ∼ mh yt gSM NP 2 × Λ Λ × ϵ ; ð1:3Þ 3yt ln UV= NP For gà >gSM, we could define these model as effectively where ΛNP corresponds to the overall mass of the stops and hypersoft, in that, for fixed fine tuning, the gap between the Λ ≫ Λ UV NP is the scale of mediation of the soft terms. SM-charged states and the weak scale is even larger than However, for generic composite Higgs (CH) models, as that in supersoft models. In practice the above equation well as for supersymmetric models with low-scale media- implies that, for strong gÃ, the new states are out of reach of tion, Eq. (1.2) provides a fair estimate of the relation the LHC even for mild tuning (see Sec. II A for a more between the scale of new physics and the amount of tuning, precise statement). Equation (1.4) synthesizes the potential the Higgs mass being fully generated by quantum correc- relevance of the TH mechanism, and makes it clear that the tions at around the weak scale. If the origin of mh is new dynamics must be rather strong for the mechanism to Λ normally termed soft in the MSMM with large UV work. Given the hierarchy problem, it then seems almost [Eq. (1.3)], it should then be termed supersoft in models inevitable to make the TH a composite TH (although it respecting Eq. (1.2). As is well known, and shown by could also be a supersymmetric composite TH). Realizations Λ ≳ Eq. (1.3), the natural expectation in the MSSM for UV of the TH mechanism within the paradigm of CH models 100 TeV is ΛNP ∼ mZ ∼ mh. In view of this, soft scenarios with fermion partial compositeness [23] have already been were already somewhat constrained by direct searches at proposed, both in the holographic and effective theory LEP and Tevatron, whereas the natural range of the scale of setups [6,9,13,14]. supersoft models is only now being probed at the LHC. It is important to recognize that the factor that boosts the Equation (1.2) sets an absolute upper bound on ΛNP for a mass of the states with SM gauge quantum numbers in given fine tuning ϵ, but does not give any information on its Eq. (1.4) is the coupling gà itself. Because of this, strong- nature. In particular it does not specify the quantum dynamics effects in the Higgs sector, which are described numbers of the new states that enter the theory at or below in the low-energy theory by nonrenormalizable operators this scale. Indeed, the most relevant states associated with with coefficients proportional to powers of gÃ=mÃ, do not the top sector, the so-called top partners, are bosonic in “decouple” when these states are made heavier, at fixed fine ϵ standard supersymmetric models and fermionic in CH tuning . In the standard parametrics of the CH, mÃ=gà is of models. Nonetheless, one common feature of these stan- the order of f, the decay constant of the σ-model within dard scenarios is that the top partners carry SM quantum which the Higgs doublet emerges as a pseudo-Nambu- 2 2 numbers, color in particular. They are thus copiously Goldstone boson (pNGB). Then ξ ≡ v =f , as well as produced in hadronic collisions, making the LHC a good being a measure of the fine tuning through ϵ ¼ 2ξ, also probe of these scenarios. Yet there remains the logical measures the relative deviation of the Higgs couplings from 2 possibility that the states that are primarily responsible for the SM ones, in the TH like in any CH model. Recent ξ ≲ the origin of the Higgs mass at or below ΛNP are not Higgs coupling measurements roughly constrain charged under the SM, and thus much harder to produce 10–20% [24], and a sensitivity of order 5% is expected and detect at the LHC. The twin Higgs (TH) is probably the in the high-luminosity phase of the LHC [25].
Recommended publications
  • Supergravity and Its Legacy Prelude and the Play
    Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity.
    [Show full text]
  • Hep-Ph/9811291
    CERN-TH/98-354 hep-ph/9811291 Quantum Gravity and Extra Dimensions at High-Energy Colliders Gian F. Giudice, Riccardo Rattazzi, and James D. Wells Theory Division, CERN CH-1211 Geneva 23, Switzerland Abstract Recently it has been pointed out that the characteristic quantum-gravity scale could be as low as the weak scale in theories with gravity propagating in higher dimensions. The observed smallness of Newton’s constant is a consequence of the large compactified volume of the extra dimensions. We investigate the consequences of this supposition for high-energy collider experiments. We do this by first compactifying the higher dimen- sional theory and constructing a 3 + 1-dimensional low-energy effective field theory of the graviton Kaluza-Klein excitations and their interactions with ordinary matter. We then consider graviton production processes, and select γ+ E and jet+ E signatures 6 6 for careful study. We find that both a 1 TeV e+e− collider and the CERN LHC will be able to reliably and perturbatively probe the fundamental gravity scale up to several arXiv:hep-ph/9811291v2 13 Mar 2000 TeV, with the precise value depending on the number of extra dimensions. Similarly, searches at LEP2 and the Tevatron are able to probe this scale up to approximately 1 TeV. We also discuss virtual graviton exchange, which induces local dimension-eight operators associated with the square of the energy-momentum tensor. We estimate the size of such operators and study their effects on ff¯ γγ observables. → CERN-TH/98-354 November 1998 Contents 1 Introduction 1 2 The Kaluza-Klein Excitations of the Graviton 7 3 Feynman Rules 14 4 Graviton Production Processes 18 5 Virtual Graviton Exchange 21 6 Graviton Production and Collider Experiments 24 6.1 e+e− andMuonColliders............................
    [Show full text]
  • Jhep05(1999)013
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Received: March 30, 1999, Accepted: May 11, 1999 HYPER VERSION Sparticle masses from the superconformal anomaly Alex Pomarol∗ Theory Division, CERN CH-1211 Geneva 23, Switzerland JHEP05(1999)013 E-mail: [email protected] Riccardo Rattazzi INFN and Scuola Normale Superiore I-56100 Pisa, Italy E-mail: [email protected] Abstract: We discuss a recently proposed scenario where the sparticle masses are purely mediated by gravity through the superconformal anomaly. This scenario ele- gantly evades the supersymmetric flavor problem since soft masses, like the anomaly, are not directly sensitive to ultraviolet physics. However, its minimal incarnation fails by predicting tachyonic sleptons. We study the conditions for decoupling of heavy threshold effects and how these conditions are evaded. We use these results to build a realistic class of models where the non-decoupling effects of ultra-heavy vectorlike matter fields eliminate the tachyons. These models have a flavor invariant superspectrum similar to that of gauge mediated models. They, however, differ in several aspects: the gaugino masses are not unified, the colored sparticles are not much heavier than the others, the µ problem is less severe and the gravitino mass is well above the weak scale, m3=2 & 10 TeV. We also show that in models where an R-symmetry can be gauged, the associated D-term gives rise to soft terms that are similarly insensitive to the ultraviolet. Keywords: Supersymmetry Breaking, Supergravity Models, Supersymmetric Standard Model. ∗On leave of absence from IFAE, Universitat Aut`onoma de Barcelona, E-08193 Bellaterra, Barcelona.
    [Show full text]
  • Dark Matter and Collider Phenomenology of Non-Universal Gaugino Masses
    Dark Matter and Collider Phenomenology of Non-Universal Gaugino Masses A dissertation presented by Michael Holmes to The Department of Physics In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Physics Northeastern University Boston, Massachusetts April, 2010 1 c Michael Holmes, 2010 ALL RIGHTS RESERVED 2 Dark Matter and Collider Phenomenology of Non-Universal Gaugino Masses by Michael Holmes ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Physics in the Graduate School of Arts and Sciences of Northeastern University, April, 2010 3 Abstract Signals of minimal supersymmetric models with non-universalities in the gaugino sector of the theory are analyzed at the CERN Large Hadron Collider (LHC) and in experiments searching for dark matter. Signals of dark matter including direct and indirect detection are investigated at depth in various supersymmetric frameworks. The parameter space of deflected mirage mediation, in which the soft terms receive contributions from the three main supersymmetry breaking mediation mechanisms, is investigated with emphasis on the neutralino sector and dark matter signals. The potential for non-universal gaugino masses to explain the recent CDMS II data is studied and possible implications for indirect dark matter detection experiments and LHC signatures are considered. Collider implications of non- universalities in the gaugino sector are examined with attention paid to specific signatures which are targeted to track the non-universalities. Further, the complementarity of dark matter and collider measurements is discussed with emphasis on breaking model degeneracies which may arise in LHC data.
    [Show full text]
  • Arxiv:1808.00010V3 [Hep-Ph] 20 Dec 2019
    USTC-ICTS-18-13 Positivity bounds on vector boson scattering at the LHC Cen Zhang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Shuang-Yong Zhou Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China Weak vector boson scattering (VBS) is a sensitive probe of new physics effects in the electroweak symmetry breaking. Currently, experimental results at the LHC are interpreted in the effective field theory approach, where possible deviations from the Standard Model in the quartic-gauge-boson couplings are often described by 18 dimension-8 operators. By assuming that a UV completion exists, we derive a new set of theoretical constraints on the coefficients of these operators, i.e. certain combinations of coefficients must be positive. These constraints imply that the current effective approach to VBS has a large redundancy: only about 2% of the full parameter space leads to a UV completion. By excluding the remaining unphysical region of the parameter space, these constraints provide guidance for future VBS studies and measurements. Introduction.| After the discovery of the Higgs bo- values. Recently, a novel approach has been developed son [1, 2], the focus of particle physics has turned to the to set theoretical bounds on the Wilson coefficients of mechanism of electroweak symmetry breaking and be- a generic EFT that can be UV completed. Going un- yond. At the Large Hadron Collider (LHC), vector bo- der the name of positivity bounds, this approach only son scattering (VBS) is among the processes most sen- requires a minimum set of assumptions, which are noth- sitive to the electroweak and the Higgs sectors.
    [Show full text]
  • Physics Beyond the Standard Model
    CERN-PH-TH/2006-042 hep-ph/0607058 Physics Beyond the Standard Model Riccardo Rattazzi Department of Physics, CERN, CH-1211 Geneva 23, Switzerland Abstract I review recent theoretical work on electroweak symmetry breaking. International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal arXiv:hep-ph/0607058v1 5 Jul 2006 1 1 Introduction I have been assigned this broad title but my talk will be mostly concerned with the origin of the electroweak scale. I will attempt to give an overview of the theoretical ‘laborings’ that came up after the end of the LEP era and in preparation to the commissioning of the LHC. An appropriate subtitle for my talk could thus be ‘Electroweak Symmetry Breaking after LEP/SLC’. There are two different sides from which to regard the legacy of LEP/SLC, and forming what is also known as the LEP paradox [1]. From one side it is an impressive triumph of human endeavour: the Standard Model (SM) is a complete theory of fundamental processes successfully tested at the per-mille precision. That means that small quantum corrections to the Born approximation are essential in the comparison between theory and experiment. However, when regarded from the other side, this great success becomes a huge conceptual bafflement, because the hierarchy problem, which inspired theoretical speculations for the last three decades, suggested that the SM should be overthrown right at the weak scale. That did not happen, so we must now understand why. I will discuss the paradoxical LEP/SLC legacy in the first part of my talk.
    [Show full text]
  • Brane-To-Brane Mediation of Supersymmetry Breaking in Presence of D-Type Breaking 1
    Institute of Physics Publishing Journal of Physics: Conference Series 53 (2006) 635–642 doi:10.1088/1742-6596/53/1/039 Corfu Summer Institute on Elementary Particle Physics Brane-to-brane mediation of supersymmetry breaking in presence of D-type breaking 1 Thomas Gr´egoire Physics department Boston University Boston MA, 02215 1. Introduction As it is well known, supersymmetry is a very attractive option for physics beyond the Standard Model (SM). While it has not been discovered at LEP and the Tevatron, it will still be extensively looked for at the LHC, and many remain hopeful that it will be seen there. An important feature of supersymmetry is that it guarantees the absence of quadratic divergence in the renormalization of scalar masses, in the case of interest the Higgs mass. This property holds even if supersymmetry is broken softly, that is by operators of dimension two or three. The minimal extension of the SM into such a theory is called the minimal supersymmetric standard model (MSSM). It contains renormalizable supersymmetric interactions as well as a set of super- renormalizable, supersymmetry-breaking interactions dubbed the soft masses: L L 2 u u d d e d u d = kin + d θ yijQiUjH + yijQiDjH + yijLiEjH + μH H (1) 2 ∗ a a a u u u d ··· +mijqi qj + m1/2λ λ + yijAuqiujh + Bμh h + , 2 a where mij are scalar soft masses squared, m1/2 gaugino masses and A trilinear scalar terms. The dots denote similar terms. The value of these soft masses are very constrained by experiment. One constraint comes from the fact that supersymmetry has not yet been discovered, which requires the superpartners to be somewhat heavy.
    [Show full text]
  • The Dawn of the Post-Naturalness Era Arxiv:1710.07663V1 [Physics.Hist-Ph]
    CERN-TH-2017-205 The Dawn of the Post-Naturalness Era Gian Francesco Giudice CERN, Theoretical Physics Department, Geneva, Switzerland Abstract In an imaginary conversation with Guido Altarelli, I express my views on the status of particle physics beyond the Standard Model and its future prospects. Contribution to the volume \From My Vast Repertoire" { The Legacy of Guido Altarelli. 1 A Master and a Friend Honour a king in his own land; honour a wise man everywhere. | Tibetan proverb [1] Guido Altarelli was an extraordinary theoretical physicist. Not only was Guido one of the heroes of the Standard Model, but he incarnated the very essence of that theory: a perfect synthesis of pure elegance and brilliance. With his unique charisma, he had a great influence on CERN and contributed much in promoting the role of theoretical physics in the life of the laboratory. With the right mixture of vision, authority, and practical common sense, he led the Theory Division from 2000 to 2004. I have always admired Guido for his brilliance, humour, knowledge, leadership, and intellectual integrity. I learned much from his qualities and his example is a precious legacy for me and for all of his colleagues. Guido had a very pragmatic attitude towards scientific theories. He was not attracted arXiv:1710.07663v1 [physics.hist-ph] 18 Oct 2017 by elaborate mathematical constructions, but wanted to understand the essence behind the formalism and get straight to the concept. In physics, I would define him as a conservative revolutionary or as an optimistic skeptical. One episode illustrates the meaning of this definition.
    [Show full text]
  • Theoretical Particle Physics Laboratory (LPTP)
    TP - IV Theoretical Particle Physics Laboratory (LPTP) Riccardo Rattazzi Relativity Quantum Mechanics instantenous action at a Discrete nature of distance is not possible microworld need fields permeating all of space wave of smallest intensity: particle interaction carried by waves in the fields Relativity Quantum Field Theory Quantum Mechanics Explanation of existence of matter, forces and their properties Standard Model: specific QFT describing/explaining basicaly all that we see EM weak strong gravity Higgs geometric bizarre Relativity Quantum Field Theory Quantum Mechanics Explanation of existence of matter, forces and their properties Standard Model: specific QFT describing/explaining basicaly all that we see EM weak strong gravity Higgs geometric bizarre • Most precisely tested theory in science (g-2 of electron, 1ppb) • Atomic and Nuclear physics “just” complex corollaries of simple principles • Satisfies all particle physics tests so far ...yet big mysteries persist (and deepened with Higgs discovery) The mysteries (some of them) • The origin of matter/antimatter symmetry in the universe • What is Dark Matter made up of? • .... • .... • The incredible properties of the vacuum Quantum mechanically the vacuum is very active Higgs force and The curvature radius its boson should of universe should plausibly be plausibly be less than confined to 10-3 mm distances of (Dark Energy order 10-30 cm puzzle) (Hierarchy puzzle) Quantum mechanically the vacuum is very active Higgs force and The curvature radius its boson should of universe should
    [Show full text]
  • Lopsided Gauge Mediation JHEP05(2011)112 7 8 (1.1) Originate Is a Gauge Μ G B
    Published for SISSA by Springer Received: May 4, 2011 Accepted: May 7, 2011 Published: May 25, 2011 Lopsided gauge mediation JHEP05(2011)112 Andrea De Simone,a Roberto Franceschini,a Gian Francesco Giudice,b Duccio Pappadopuloa and Riccardo Rattazzia aInstitut de Th´eoriedes Ph´enom`enesPhysiques, EPFL, CH-1015 Lausanne, Switzerland bCERN, Theory Division, CH-1211 Geneva 23, Switzerland E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: It has been recently pointed out that the unavoidable tuning among supersym- metric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called µ-Bµ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of Bµ and of the other Higgs-sector soft masses, as predicted in models where both µ and Bµ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of tan β. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of new interactions between the Higgs and the messenger superfields, the theory can remain perturbative up to very large scales, thus retaining gauge coupling unification.
    [Show full text]
  • Physics Beyond the Standard Model CERN, Switzerland E-Mail: Pos(HEP2005)399 (2.1) Rigin of Eletroweak LEP Paradox, Approximation ’
    PoS(HEP2005)399 Physics Beyond the Standard Model † Riccardo Rattazzi∗ CERN, Switzerland E-mail: [email protected] I review recent theoretical work on electroweak symmetry breaking International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal ∗Speaker. †On leave from INFN, Sezione di Pisa, Italy. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Physics Beyond the Standard Model Riccardo Rattazzi 1. Introduction I have been assigned this broad title but my talk will be mostly concerned with the origin of the electroweak scale. I will attempt to give an overview of the theoretical ‘laborings’ that came up after the end of the LEP era and in preparation to the commissioning of the LHC. An appropriate subtitle for my talk could thus be ‘Electroweak Symmetry Breaking after LEP/SLC’. There are two different sides from which to regard the legacy of LEP/SLC, and forming what is also known as the LEP paradox [1]. From one side it is an impressive triumph of human endeavour: the Standard Model (SM) is a complete theory of fundamental processes successfully tested at PoS(HEP2005)399 the per-mille precision. That means that small quantum corrections to the Born approximation are essential in the comparison between theory and experiment. However, when regarded from the other side, this great success becomes a huge conceptual bafflement, because the hierarchy problem, which inspired theoretical speculations for the last three decades, suggested that the SM should be overthrown right at the weak scale.
    [Show full text]
  • Next-To-Leading Order Corrections to Gauge-Mediated Gaugino Masses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Feb 1998 IFUP{TH 63/97 hep-ph/9802446 Next-to-leading order corrections to gauge-mediated gaugino masses Marco Picariello and Alessandro Strumia Dipartimento di Fisica, Universita di Pisa and INFN, sezione di Pisa, I-56126 Pisa, Italia Abstract We compute the next-to-leading order corrections to the gaugino masses M in gauge- i mediated mo dels for generic values of the messenger masses M and discuss the predic- tions of uni ed messenger mo dels. If M < 100 TeV there can b e up to 10% corrections to the leading order relations M / . If the messengers are heavier there are only i i few % corrections. We also study the messenger corrections to gauge coupling uni - cation: as a result of cancellations dictated by sup ersymmetry, the predicted value of the strong coupling constant is typically only negligibly increased. 1 Intro duction The \gauge mediation" scenario for sup ersymmetric particle masses [1] can b e realized in reasonable mo dels [2, 3]. Furthermore, with a uni ed sp ectrum of messenger elds, it gives rise to some stable and acceptable prediction for the sp ectrum of sup ersymmetric particles. One of these predictions is the `uni cation prediction' for the gaugino masses M (i =1;2;3): at one-lo op order the RGE-invariant ratio M = is the same for all the i i i i N three factors of the SM gauge group G = G = U(1) SU(2) SU(3) .
    [Show full text]