The Middle Jurassic San Rafael Group and Related Rocks in East-Central Utah Robert B

Total Page:16

File Type:pdf, Size:1020Kb

The Middle Jurassic San Rafael Group and Related Rocks in East-Central Utah Robert B New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/32 The Middle Jurassic San Rafael Group and related rocks in east-central Utah Robert B. O'Sullivan, 1981, pp. 89-96 in: Western Slope (Western Colorado), Epis, R. C.; Callender, J. F.; [eds.], New Mexico Geological Society 32nd Annual Fall Field Conference Guidebook, 337 p. This is one of many related papers that were included in the 1981 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission. This page is intentionally left blank to maintain order of facing pages. New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 89 THE MIDDLE JURASSIC SAN RAFAEL GROUP AND RELATED ROCKS IN EAST-CENTRAL UTAH ROBERT B. O'SULLIVAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION outcrop is interrupted and concealed by faulting. In the San The San Rafael Group of Middle Jurassic age is widely exposed in Rafael Swell the group consists of five formations, in ascending the uplands of the San Rafael Swell (fig. 1) and throughout much of order, Page Sandstone, Carmel Formation, Entrada Sandstone the lowlands of the Green River Desert. Eastward from the Green and the Curtis and Summerville Formations. In the Westwater River, the San Rafael Group is well displayed in high escarpments Canyon area near the eastern border of Utah, the San Rafael that form an almost continuous line of outcrop to Westwater Can Group is represented yon. Between Courthouse Rock and Salt Valley the line of 90 O'SULLIVAN solely by the Entrada Sandstone. Throughout the area the group is everywhere are characterized by ubiquitous chert pebbles and underlain by the Glen Canyon Group of Triassic and Jurassic age granules (fig. 2A). An unconformity within the San Rafael referred and is overlain by the Morrison Formation of Late Jurassic age. to as J-3 at the top of the Entrada Sandstone is much less wide- spread and is difficult to recognize east of White Wash. The J-4 un- STRATIGRAPHY conformity above the J-3 surface is truncated southward by the J-5 The distribution of the various parts of the San Rafael Group and unconformity far to the north of Moab and is absent in east-central their relationship to overlying and underlying rocks is shown on Utah. The unconformities and their regional stratigraphic Figure 1. The stratigraphic diagram, as well as most of this report, significance are discussed more completely in a report by Pipirin- is primarily a summary of two separate investigations (O'Sullivan, gos and O'Sullivan (1978). 1980 and 1981) describing Jurassic rocks from the Green River eastward about 74 km to Dewey Bridge. Some additional observa- Page Sandstone tions to the west in the San Rafael Swell and to the east near West- The Page Sandstone (Peterson and Pipiringos, 1979, p. B20-B30) water Canyon are included. crops out primarily in a broad belt 65-80 km wide that trends about N. 15° E. and extends from the Straight Cliffs area of south- Sources of Data central Utah through the San Rafael Swell and into northern Utah. The stratigraphic diagram (fig. 1) is derived from several sources. relatively small outliers of the Page Sandstone are recognized be- Most of the section in the San Rafael Swell (sec. 1) is from Wright tween the Green River and Salt Valley in east-central Utah. The and others (1979, p. 43-56) and was measured in secs. 3 and 4, Page is a light gray to reddish-tan fine-grained sandstone. In the T. 19 S., R. 12 E. The Page Sandstone in the San Rafael Swell (sec. San Rafael Swell, the Page is a highly crossbedded eolian sand- 1) was measured by G. N. Pipiringos (oral commun., 1964) in sec. stone (fig. 2B) about 30 m thick. In the swell, the Page is very 18, T. 19 S., R. 11 E. The Carmel Formation and Entrada similar to the underlying Navajo Sandstone in bedding and lithol- Sandstone in the composite section at the Green River (sec. 2) is ogy, because it was undoubtedly derived from the Navajo and de- from Wright and others (1962, fig. 2, no. 1 sec.) and was described posited in a similar environment. Near Tenmile Butte (sec. 3) the from exposures in sec. 4, T. 24 S., R. 16 E. The upper part of the Page is 10 m thick and consists of a series of interdune flat beds as Green River section was measured by the writer near much as 1.5 m thick alternating with eolian crossbedded units as Dellenbaugh Butte in secs. 12 and 13, T. 23 S., R. 16 E. The much as 3 m thick. At Courthouse Rock (sec. 5), the gray Page Entrada Sandstone at Ten- mile Butte is from Craig and others (1959, Sandstone is locally at least 30 m thick and consists almost no. 204 sec.) and was described in sec. 23, T. 24 S., R. 18 E. The entirely of flat-bedded units (fig. 2C) with only one crossbedded upper part of the Tenmile Butte section was measured by the writer unit near the middle which is less than 1 m thick. Most of the Page in secs. 1 and 12, and the Page Sandstone was measured in sec. of Courthouse Rock in all probability represents deposition in 27, T. 24 S., R. 18 E. All the other measurements are by the writer water. The Page Sandstone in east-central Utah appears to and the locations of the stratigraphic sections are as follows: Salt have been deposited in broad erosional depressions formed in the Valley (sec. 4) in secs. 30 and 32, T. 22 S., R. 20 E.; Courthouse top of the Navajo Sandstone, possibly during the time the J-2 Rock (sec. 5) in secs. 20, 28 and 29, T. 24 5., R. 20 E.; Dewey Bridge unconformity developed. (sec. 6) in sec. 7, T. 23 5., R. Carmel Formation 24 E.; and Westwater Canyon (sec. 7) in secs. 9 and 16, T. 20 S., R. The Carmel Formation is of diverse lithology. In the stratigraphic 25 E. section at the San Rafael Swell (sec. 1) about 75 percent of the Unconformities Carmel Formation consists of greenish-gray and minor reddish- Three unconformities are associated with the San Rafael Group brown siltstone and shale in units as much as 10 m thick (Wright in east-central Utah. Two of these unconformities—termed J-2 at and others, 1979, p. 52-56): Limestone, sandstone and gypsum the base of the San Rafael and J-5 at the top—are also recognized form a subordinate lithology. Gypsum is present in massive beds throughout much of the Western Interior of the United States. as much as 3.6 m thick, as a disseminated constituent and in veins The J-2 erosion surface is also informally termed the "chert pebble un- and thin seams that cut other lithologies. Gypsum is most con- conformity" because basal beds of the San Rafael Group nearly Figure 2. Views of San Rafael Group and Morrison Formation. A Closeup of pebbles on 1-2 unconformity near Courthouse Rock in NW'/, sec. 28, T. 24 S., R. 20 E. B Page Sandstone in San Rafael Swell in sec. 18, T. 19 S., R. 11 E. Feet of the geologists are on J-2 unconformity, which is basal unconform- able contact of Page and underlying Glen Canyon Group. Photograph by G. N. Pipiringos. C Lower part of Page Sandstone near Courthouse Rock in SWY, sec. 28, T. 24 S., R. 20 E. D Jurassic rocks near Duma Point in NW'/4 sec. 30, T. 23, S., R. 18 E. Top of Slick Rock Member (SR) of Entrada Sandstone; lower Summer- ville of McKnight (1940) includes lower beds (LB), bed at Black Steer Knoll (K) and upper beds (UB); the basal red ledge (RL) of Summe rville Formation; bed A (A) at base of Morrison Formation overlies the J-5 unconformity. The lower beds of the Salt Wash Member are 10.8 m thick and extend from the I-5 unconformity to the thick fluviatile sandstones on upper part of mesa.
Recommended publications
  • Ron Blakey, Publications (Does Not Include Abstracts)
    Ron Blakey, Publications (does not include abstracts) The publications listed below were mainly produced during my tenure as a member of the Geology Department at Northern Arizona University. Those after 2009 represent ongoing research as Professor Emeritus. (PDF) – A PDF is available for this paper. Send me an email and I'll attach to return email Blakey, R.C., 1973, Stratigraphy and origin of the Moenkopi Formation of southeastern Utah: Mountain Geologist, vol. 10, no. 1, p. 1 17. Blakey, R.C., 1974, Stratigraphic and depositional analysis of the Moenkopi Formation, Southeastern Utah: Utah Geological Survey Bulletin 104, 81 p. Blakey, R.C., 1977, Petroliferous lithosomes in the Moenkopi Formation, Southern Utah: Utah Geology, vol. 4, no. 2, p. 67 84. Blakey, R.C., 1979, Oil impregnated carbonate rocks of the Timpoweap Member Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona: Utah Geology, vol. 6, no. 1, p. 45 54. Blakey, R.C., 1979, Stratigraphy of the Supai Group (Pennsylvanian Permian), Mogollon Rim, Arizona: in Carboniferous Stratigraphy of the Grand Canyon Country, northern Arizona and southern Nevada, Field Trip No. 13, Ninth International Congress of Carboniferous Stratigraphy and Geology, p. 89 109. Blakey, R.C., 1979, Lower Permian stratigraphy of the southern Colorado Plateau: in Four Corners Geological Society, Guidebook to the Permian of the Colorado Plateau, p. 115 129. (PDF) Blakey, R.C., 1980, Pennsylvanian and Early Permian paleogeography, southern Colorado Plateau and vicinity: in Paleozoic Paleogeography of west central United States, Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, p. 239 258. Blakey, R.C., Peterson, F., Caputo, M.V., Geesaman, R., and Voorhees, B., 1983, Paleogeography of Middle Jurassic continental, shoreline, and shallow marine sedimentation, southern Utah: Mesozoic PaleogeogÂraphy of west central United States, Rocky Mountain Section of Society of Economic Paleontologists and Mineralogists (Symposium), p.
    [Show full text]
  • Cyclicity, Dune Migration, and Wind Velocity in Lower Permian Eolian Strata, Manitou Springs, CO
    Cyclicity, Dune Migration, and Wind Velocity in Lower Permian Eolian Strata, Manitou Springs, CO by James Daniel Pike, B.S. A Thesis In Geology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dustin E. Sweet Chair of Committee Tom M. Lehman Jeffery A. Lee Mark Sheridan Dean of the Graduate School August, 2017 Copyright 2017, James D. Pike Texas Tech University, James Daniel Pike, August 2017 ACKNOWLEDGMENTS I would like to extend my greatest thanks to my advisor Dr. Dustin Sweet, who was an excellent advisor during this research. Dr. Sweet was vital throughout the whole process, be it answering questions, giving feedback on figures, and imparting his extensive knowledge of the ancestral Rocky Mountains on me; for this I am extremely grateful. Dr. Sweet allowed me to conduct my own research without looking over my shoulder, but was always available when needed. When I needed a push, Dr. Sweet provided it. I would like to thank my committee memebers, Dr. Lee and Dr. Lehman for providing feedback and for their unique perspectives. I would like to thank Jenna Hessert, Trent Jackson, and Khaled Chowdhury for acting as my field assistants. Their help in taking measurements, collecting samples, recording GPS coordinates, and providing unique perspectives was invaluable. Thank you to Melanie Barnes for allowing me to use her lab, and putting up with the mess I made. This research was made possible by a grant provided by the Colorado Scientific Society, and a scholarship provided by East Texas Geological Society.
    [Show full text]
  • Distribution of Elements in Sedimentary Rocks of the Colorado Plateau a Preliminary Report
    Distribution of Elements in Sedimentary Rocks of the Colorado Plateau A Preliminary Report GEOLOGICAL SURVEY BULLETIN 1107-F Prepared on behalf of the U.S. Atomic Energy Commission Distribution of Elements in Sedimentary Rocks of the Colorado Plateau A Preliminary Report By WILLIAM L. NEWMAN CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1107-F Prepared on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE. WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. CONTENTS Page Abstract____________________________-__-__-_---_-___-___ 337 Introduction ______________________________________________________ 339 Physical features of sedimentary rocks------_--__----_------------__- 339 Precambrian sedimentary rocks.________________________________ 341 Cambrian system____________________________________________ 342 Ordovician system..___________________________________________ 344 Devonian system._____________________________________________ 344 Mississippian system.._________________________________________ 346 Pennsylvanian system________________________________________ 346 Permian system _______________________________________________ 349 Triassic system______________________________________________ 352 Moenkopi formation _______________________________________ 352 Chinle formation..._______________________________________
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Lexique Stratigraphique Canadien - Volume V-B - Region Des Appalaches, Des Basses-Terres Du Saint-Laurent Et Des Iles De La Madeleine Lexique Stratigraphique
    DV 91-23 LEXIQUE STRATIGRAPHIQUE CANADIEN - VOLUME V-B - REGION DES APPALACHES, DES BASSES-TERRES DU SAINT-LAURENT ET DES ILES DE LA MADELEINE LEXIQUE STRATIGRAPHIQUE CANADIEN Volume Fa Région des Appalaches, des Basses-Terres du Saint-Laurent et des îles de la Madeleine par Yvon Globensky et collaborateurs 1993 Québec ©© LEXIQUE STRATIGRAPHIQUE CANADIEN Volume r-8 Région des Appalaches, des Basses-Terres du Saint-Laurent et des Îles de la Madeleine par Yvon Globensky et collaborateurs DV 91-23 1993 Quebec ®® DIRECTION GÉNÉRALE DE L'EXPLORATION GÉOLOGIQUE ET MINÉRALE Sous-ministre adjoint: R.Y. Lamarche DIRECTION DE LA RECHERCHE GÉOLOGIQUE Directeur: A. Simard, par intérim SERVICE GÉOLOGIQUE DE QUÉBEC Chef: J.-M. Charbonneau Manuscrit soumis le: 30-01-91 Accepté pour publication le: 14-06-91 Lecteur critique J. Béland Édition Géomines / F. Dompierre Préparé par la Division de l'édition (Service de la géoinformation, DGEGM) Couvert 1: 1) Paucicrura rogata et Platystrophia amoena. Membre de Rosemont. Au SW de Saint-Jean-sur-Richelieu. Photo: tirée de Globensky, 1981b, page 39 2) Formation de Solomon's Corner. Saint-Armand-Station. Photo: tirée de Globensky, 1981b, page 126 3) Faciès de Terrebonne, formation de Tétreauville. Rivière L'Assomption. Photo: Y. Globensky 4) Formation de Covey Hill. Coupe à l'extrémité NW du lac Gulf, à l'ouest de Covey Hill. Photo: tirée de Globensky, 1986, page 9 Couvert 4: 1) Formation d'Indian Point. Péninsule de Forillon. Photo: D. Brisebois 2) Coupe type de la Formation de Wallace Creek. Étang Streit, près de Philipsburg. Photo: tirée de Globensky, 1981b, page 101 3) Euomphalopsis sp.
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Paper Number: 1591 the Stratigraphic Table of Germany Revisited: 2016
    Paper Number: 1591 The Stratigraphic Table of Germany revisited: 2016 Menning, M., Hendrich, A. & Deutsche Stratigraphische Kommission Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, D-14473 Potsdam, Germany, menne@gfz- potsdam.de For the occasion of the “Year of Geosciences” in Germany 2002 the German Stratigraphic Commission created the “Stratigraphic Table of Germany 2002” (STD 2002) [1]. It presents more than 1 000 geological units, beds, formations, groups, regional stages, and regional series of the Regional Stratigraphic Scale (RSS) of Central Europe in relation to the Global Stratigraphic Scale (GSS). Alongside the recent stratigraphic terms are also some historical names like Wealden (now Bückeberg Formation, Early Cretaceous) and Wellenkalk (now Jena Formation, Muschelkalk Group, Middle Triassic) [1] (http://www.stratigraphie.de/std2002/download/STD2002_large.pdf). The numerical ages in the table have been estimated using all available time indicators including (1) radio-isotopic ages, (2) sedimentary cycles of the Milankovich-band of about 0.1 Ma and 0.4 Ma duration for the Middle Permian to Middle Triassic (Rotliegend, Zechstein, Buntsandstein, Muschelkalk, and Keuper groups), and (3) average weighted thicknesses for the Late Carboniferous of the Central European Namurian, Westphalian, and Stephanian regional stages. Significant uncertainties are indicated by arrows instead of error bars as in the Global Time Scales 1989 and 2012 (GTS 1989, Harland et al. 1990 [2], GTS 2012, Gradstein et al. 2012 [3]). Those errors were underestimated in the GTS 2012 [3] because they were calculated using too much emphasis on laboratory precision of dating and less on the uncertainty of geological factors. Figure 1: Buntsandstein and Muschelkalk in the Stratigraphic Table of Germany 2016 (part) In 2015 und 2016 the German Stratigraphic Commission updated the entire STD 2002 [1].
    [Show full text]
  • Anhydrite-Dissolution Porosity in the Upper Muschelkalk Carbonate Aquifer, NE-Switzerland: Implications for Geothermal Energy and Geological Storage of Gas
    Available online at www.sciencedirect.com ScienceDirect Procedia Earth and Planetary Science 17 ( 2017 ) 897 – 900 15th Water-Rock Interaction International Symposium, WRI-15 Anhydrite-dissolution porosity in the Upper Muschelkalk carbonate aquifer, NE-Switzerland: implications for geothermal energy and geological storage of gas L. Aschwandena,1, L. W. Diamonda, A. Adamsa, M. Mazureka aRock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, CH-3012 Bern, Switzerland Abstract The Upper Muschelkalk carbonate aquifer within the Swiss Molasse Basin is currently being investigated for its potential for geothermal energy exploitation and geological storage of gas. Porosities of up to 25% are locally observed where early diagenetic (Triassic) anhydrite has been dissolved by groundwater. However, the dimensions and the spatial distribution of this type of cavernous porosity are not well known, as the Basin is underexplored. The present study reconstructs the genesis and evolution of these pores from drill-core studies, thus providing conceptual understanding to support ongoing exploration in the deeper, hotter southern regions of the Basin. The reconstruction is based on petrographic investigations, analyses of stable and radiogenic isotopes and fluid inclusion studies. The results show that the anhydrite dissolved during the Neogene upon influx of chemically modified meteoric runoff from uplifted crystalline domes in the Black Forest area of southern Germany. As this hydrogeological system is spatially restricted to the shallow, northern margin of the aquifer, we conclude that zones of anhydrite-dissolution porosity are unlikely to extend deeper into the Basin. Exploration in the deeper realms of the Basin should therefore target other types of porosity and permeability, e.g.
    [Show full text]
  • Sequence Stratigraphy, Diagenesis, and Depositional Facies of an Exposed Megaflap: Pennsylvanian Hermosa Group, Gypsum Valley Salt Wall, Paradox Basin, Colorado
    SEQUENCE STRATIGRAPHY, DIAGENESIS, AND DEPOSITIONAL FACIES OF AN EXPOSED MEGAFLAP: PENNSYLVANIAN HERMOSA GROUP, GYPSUM VALLEY SALT WALL, PARADOX BASIN, COLORADO KYLE THOMAS DEATRICK Master’s Program in Geological Sciences APPROVED: Katherine A. Giles, Ph.D., Chair Richard P. Langford, Ph.D. Gary L. Gianniny, Ph.D. Stephen Crites, Ph. D. Dean of the Graduate School Copyright © by Kyle Thomas Deatrick 2019 Dedication I wish to dedicate this work to my family and friends, especially my parents Julie and Dennis Deatrick for their unwavering support and encouragement. SEQUENCE STRATIGRAPHY, DIAGENESIS, AND DEPOSITIONAL FACIES OF AN EXPOSED MEGAFLAP: PENNSYLVANIAN HERMOSA GROUP, GYPSUM VALLEY SALT WALL, PARADOX BASIN, COLORADO by KYLE THOMAS DEATRICK, B.S. Geology THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2019 ProQuest Number:27671333 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 27671333 Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author. All Rights Reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Acknowledgements I wish to thank my committee members whose time and support provided tremendous input into my research.
    [Show full text]
  • Earliest Jurassic U-Pb Ages from Carbonate Deposits in the Navajo Sandstone, Southeastern Utah, USA Judith Totman Parrish1*, E
    https://doi.org/10.1130/G46338.1 Manuscript received 3 April 2019 Revised manuscript received 10 July 2019 Manuscript accepted 11 August 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 4 September 2019 Earliest Jurassic U-Pb ages from carbonate deposits in the Navajo Sandstone, southeastern Utah, USA Judith Totman Parrish1*, E. Troy Rasbury2, Marjorie A. Chan3 and Stephen T. Hasiotis4 1 Department of Geological Sciences, University of Idaho, P.O. Box 443022, Moscow, Idaho 83844, USA 2 Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA 3 Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Room 383, Salt Lake City, Utah 84112-0102, USA 4 Department of Geology, University of Kansas, 115 Lindley Hall, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045-7594, USA ABSTRACT with the lower part of the Navajo Sandstone New uranium-lead (U-Pb) analyses of carbonate deposits in the Navajo Sandstone in across a broad region from southwestern Utah southeastern Utah (USA) yielded dates of 200.5 ± 1.5 Ma (earliest Jurassic, Hettangian Age) to northeastern Arizona (Blakey, 1989; Hassan and 195.0 ± 7.7 Ma (Early Jurassic, Sinemurian Age). These radioisotopic ages—the first re- et al., 2018). The Glen Canyon Group is under- ported from the Navajo erg and the oldest ages reported for this formation—are critical for lain by the Upper Triassic Chinle Formation, understanding Colorado Plateau stratigraphy because they demonstrate that initial Navajo which includes the Black Ledge sandstone (e.g., Sandstone deposition began just after the Triassic and that the base of the unit is strongly Blakey, 2008; Fig.
    [Show full text]