Pterospora Andromedea – Pinedrops
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Bulletin of the Native Plant Society of Oregon Dedicated to the Enjoyment, Conservation and Study of Oregon’S Native Plants and Habitats
Bulletin of the Native Plant Society of Oregon Dedicated to the enjoyment, conservation and study of Oregon’s native plants and habitats VOLUME 50, NO. 7 AUGUST/SEPTEMBER 2017 2017 Annual Meeting Recap: Land of Umpqua For an in-depth recap and photos of one Roseburg locales, and Wolf Creek. On Susan Carter (botanist with the Rose- of this year’s annual meeting field trips, Saturday, nine trips included hikes to burg BLM office), Marty Stein (USFS visit Tanya Harvey’s “Plants and Places” Beatty Creek, Bilger Ridge, Fall Creek botanist), and Rod Trotter. blog, westerncascades.com/2017/06/21/ Falls, Hemlock Lake, King Mountain, Field trip participants were treated weather-woes-at-hemlock-lake Limpy Rock, Lookout Mountain, Tah- to views of the regionally unique en- NPSO members traveled to the kenitch Dunes, and Twin Lakes. Partici- demic species, including Calochortus Land of Umpqua June 9–11 for the pants at higher locations were treated coxii (crinite mariposa lily, named for 2017 Annual Meeting, jointly hosted by to a little snow (just enough to enhance Marvin Cox), Calochortus umpquaensis the Umpqua Valley and Corvallis Chap- the fun) but those at lower sites found (Umpqua mariposa lily), and Kalmiopsis ters. This location, situated at a “botani- primarily pleasant (if a bit drizzly) fragrans (fragrant kalmiopsis) along with cal crossroads” between the California weather. Sunday’s adventures trekked the threatened Lupinus oreganus (Kin- Floristic Province and the Vancouverian to the North Bank Preserve, Roseburg caid’s lupine). Noting some highlights Floristic Province, combined with par- locales, Wolf Creek, Beatty Creek, and from one trip, Gail Baker reports from ticular geological formations, allowed Bilger Ridge. -
Botanist Interior 43.1
2011 THE MICHIGAN BOTANIST 129 THE MYCORRHIZAL SYSTEM OF PTEROSPORA ANDROMEDEA (PINE-DROPS) IN WEST MICHIGAN INFERRED FROM DNA SEQUENCE DATA Jianhua Li*, Jeffrey Corajod, Holly Vander Stel, and Austin Homkes Department of Biology Hope College 35 E 12th St., Schaap Science Center, Holland, MI 49423 ABSTRACT Pterospora andromedea is a mycoheterotrophic plant with a disjunct distribution between west - ern and eastern North America and obtains carbon and nutrients indirectly from photosynthetic plants via an ectomycorrhizal fungal bridge. In this study, we used DNA sequence data to determine the or - ganisms involved in the system in West Michigan. Our results suggest that at least two photosyn - thetic plants ( Tsuga and Acer ) are the potential carbon source of the system and that Pterospora is specifically associated with an unidentified species of subgenus Amylopogon of Rhizopogon . Previ - ous studies have shown that seed germination of Pterospora relies on chemical cues from the fungus, implying a dominant role of the fungus in the system. Our field observations suggest that repeated branching of Pterospora roots increases the mass production of the fungal mycelia and lead us to speculate that Pterospora may be a mutualistic partner, not a parasite or exploiter, in the mycorrhizal system. KEYWORDS: Pterospora , nrDNA ITS, rbc L, mutualism, mycorrhizal, subgenus Amylopogon , Rhizopogon . Pterospora andromedea Torr. (pine-drops) is a mycoheterotrophic plant rely - ing on fungal host for germination, growth, and development (Bakshi 1959 ). Molecular studies have shown its close relationship with other myco - heterotrophic plants in Ericaceae such as Monotropa , Allotropa , and Sarcodes (Cullings 1994 ; Kron et al. 2002 ). Pine-drops show a disjunct distribution between the eastern and western North America with an extension in the west to northern Mexico (Bakshi 1959 ). -
Field Trip Plant List
Location: Castlewood Canyon State Park Date: May 1, 2021 *Questions? Suggestions? Contact us at [email protected] Leader: Audrey Spencer & Suzanne Dingwell Major Group Family Scientific name (Ackerfield) Common name Nativity Notes Ferns and Allies Dryopteridaceae Cystopteris fragilis brittle bladder fern Native Gymnosperms Cupressaceae Juniperus scopulorum Rocky Mountain juniper Native Gymnosperms Pinaceae Pinus ponderosa ponderosa pine Native Gymnosperms Pinaceae Pseudotsuga menziesii Douglas-fir Native Angiosperms Agavaceae Leucocrinum montanum common sand lily Native Angiosperms Agavaceae Yucca glauca Great Plains yucca Native Angiosperms Alliaceae Allium sp. onion Native in fruit Angiosperms Apiaceae Lomatium orientale salt-and-pepper Native Angiosperms Asteraceae Achillea millefolium yarrow Native Angiosperms Asteraceae Arctium minus common burdock Introduced List C Angiosperms Asteraceae Artemisia frigida fringed sagebrush Native Angiosperms Asteraceae Grindelia squarrosa curlycup gumweed Native Angiosperms Asteraceae Heterotheca villosa hairy false goldenaster Native Angiosperms Asteraceae Nothocalais cuspidata sharppoint prairie-dandelion Native Microseris cuspidata (Pursh) Sch. Bip. GBIF 2/28/21 J. Ackerfield Angiosperms Asteraceae Packera fendleri Fendler's ragwort Native Angiosperms Asteraceae Taraxacum officinale dandelion Introduced Angiosperms Boraginaceae Mertensia lanceolata prairie bluebells Native Angiosperms Brassicaceae Alyssum simplex alyssum Introduced Angiosperms Brassicaceae Noccaea fendleri ssp. glauca -
Beechwood Gardens Bog Rosemary
Bog Rosemary* Andromeda polifolia Height: 24 inches Spread: 3 feet Sunlight: Hardiness Zone: 1b Description: A very small shrub for detail use in gardens, with bluish needle-like foliage and pink urn-shaped flowers in spring; very fastidious as to growing conditions, needs ample consistent moisture and highly organic soils, will not tolerate alkaline soil Ornamental Features Bog Rosemary flowers Photo courtesy of NetPS Plant Bog Rosemary features dainty nodding white bell-shaped flowers with Finder shell pink overtones at the ends of the branches from mid to late spring. It has bluish-green foliage. The needles remain bluish-green throughout the winter. The fruit is not ornamentally significant. Landscape Attributes Bog Rosemary is a multi-stemmed evergreen shrub with a more or less rounded form. It lends an extremely fine and delicate texture to the landscape composition which should be used to full effect. This is a relatively low maintenance shrub, and usually looks its best without pruning, although it will tolerate pruning. It has no significant negative characteristics. Bog Rosemary is recommended for the following landscape applications; - General Garden Use Planting & Growing Bog Rosemary will grow to be about 24 inches tall at maturity, with a spread of 3 feet. It tends to fill out right to the ground and therefore doesn't necessarily require facer plants in front. It grows at a slow rate, and under ideal conditions can be expected to live for approximately 20 years. 361 N. Hunter Highway Drums, PA 18222 (570) 788-4181 www.beechwood-gardens.com This shrub does best in full sun to partial shade. -
Plant Taxonomy of the Salish and Kootenai Indians of Western Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1974 Plant taxonomy of the Salish and Kootenai Indians of western Montana Jeffrey Arthur Hart The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Hart, Jeffrey Arthur, "Plant taxonomy of the Salish and Kootenai Indians of western Montana" (1974). Graduate Student Theses, Dissertations, & Professional Papers. 6833. https://scholarworks.umt.edu/etd/6833 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PLANT TAXONOMY OF THE SALISH AND KOOTENAI INDIANS OF WESTERN MONTANA by Jeff Hart B. A., University of Montana, 1971 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1974 Approved by; Chairman, Board of Examiners Date ^ / Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37634 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Ois»9rt«ition PuWimNng UMI EP37634 Published by ProQuest LLC (2013). -
Northfield Open Space and Recreation Plan 2021 – 2028
FINAL DRAFT NORTHFIELD OPEN SPACE AND RECREATION PLAN 2021 – 2028 FINAL DRAFT Prepared by the Northfield Open Space Committee with assistance from the Franklin Regional Council of Governments This project was funded by a Direct Local Technical Assistance Grant provided by the Massachusetts Department of Housing and Community Development FINAL DRAFT TOWN OF NORTHFIELD OPEN SPACE AND RECREATION PLAN 2021 – 2028 Prepared by the Northfield Open Space Committee (OSC): Julia Blyth, Chair Joanne McGee Jerry Wagener Jennifer Tufts Robin Conley Susan Space With technical assistance provided by the Franklin Regional Council of Governments Planning Department Peggy Sloan, Planning Director Kimberly Noake MacPhee, Land Use and Natural Resources Program Manager Helena Farrell, Land Use and Natural Resources Planner Ryan Clary, Senior GIS Specialist Tamsin Flanders, Planning Intern This project was funded by a Direct Local Technical Assistance Grant provided by the Massachusetts Department of Housing and Community Development TABLE OF CONTENTS Section 1 – Plan Summary……………………………………….………………1-1 Section 2 – Introduction………………………………………………………….2-1 A. Statement of Purpose.…………………………………………………………….……..2-1 B. Planning Process and Public Participation.………………………………………….….2-2 Section 3 – Community Setting………………………………………………….3-1 A. Regional Context…………………………………………………………………..……3-1 B. History of the Community………………………………………………………………3-9 C. Population Characteristics……………………………………………………...……...3-13 D. Growth and Development Patterns……………………………………………...……..3-20 Section -
Acadian-Appalachian Alpine Tundra
Acadian-Appalachian Alpine Tundra Macrogroup: Alpine yourStateNatural Heritage Ecologist for more information about this habitat. This is modeledmap a distributiononbased current and is data nota substitute for field inventory. based Contact © Josh Royte (The Nature Conservancy, Maine) Description: A sparsely vegetated system near or above treeline in the Northern Appalachian Mountains, dominated by lichens, dwarf-shrubland, and sedges. At the highest elevations, the dominant plants are dwarf heaths such as alpine bilberry and cushion-plants such as diapensia. Bigelow’s sedge is characteristic. Wetland depressions, such as small alpine bogs and rare sloping fens, may be found within the surrounding upland matrix. In the lower subalpine zone, deciduous shrubs such as nannyberry provide cover in somewhat protected areas; dwarf heaths including crowberry, Labrador tea, sheep laurel, and lowbush blueberry, are typical. Nearer treeline, spruce and fir that State Distribution: ME, NH, NY, VT have become progressively more stunted as exposure increases may form nearly impenetrable krummholz. Total Habitat Acreage: 8,185 Ecological Setting and Natural Processes: Percent Conserved: 98.1% High winds, snow and ice, cloud-cover fog, and intense State State GAP 1&2 GAP 3 Unsecured summer sun exposure are common and control ecosystem State Habitat % Acreage (acres) (acres) (acres) dynamics. Found mostly above 4000' in the northern part of NH 51% 4,160 4,126 0 34 our region, alpine tundra may also occur in small patches on ME 44% 3,624 2,510 1,082 33 lower ridgelines and summits and at lower elevations near the Atlantic coast. NY 3% 285 194 0 91 VT 1% 115 115 0 0 Similar Habitat Types: Acadian-Appalachian Montane Spruce-Fir-Hardwood Forests typically occur downslope. -
Pterospora Andromedea Nutt
Pterospora andromedea Nutt. pine-drops State Distribution Best Survey Period Photo by Daniel C. Nepstad Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State threatened indicated as ‘rare.’ Seventeen occurrences occur on public lands or designated preserves. None of these occurrences, Global and state rank: G5/S2 however, are under specific active protection. Family: Monotropaceae (Indian-pipe) Recognition: Pine-drop lacks chlorophyll and has one to several simple, erect stems, from 3-10 dm tall, bearing Other common names: giant birds nest, Albany beech- numerous scale-like leaves and a terminal raceme of drops numerous nodding flowers. The approx. 6-7 mm long , Synonyms: Monotropa procera Torr. bell-shaped corolla is white while the sepals and vegeta- tive parts of the plant are reddish to maroon. The stem Taxonomy: Pterospora andromeda is the only species in and sepals are glandular-hairy giving the plant a its genus (monotypic). Sometimes included in the clammy-sticky feel. The similar, but more widespread and Pyrolaceae or Ericaceae under subfamily Pyrolaceae, common species Monotropa uniflora (Indian pipe) and M. Pterospora and other species of the Monotropaceae differ hypopithys (pinesap), also lack chlorophyll, but are in their saprophytic (absorb nutrients from dead or decay- typically one half the size of Pterospora or smaller. In ing matter) habit (Voss 1996). addition, the flowers of both Indian pipe and pinesap become erect in fruit, unlike the strongly nodding fruits of Total range: A species primarily of Western North Pterospora. Indian pipe also differs in bearing only a America, pine drops is disjunct in the Great Lakes region single large flower on each stem. -
Systematics, Phylogeography, Fungal Associations, and Photosynthesis
Systematics, Phylogeography, Fungal Associations, and Photosynthesis Gene Evolution in the Fully Mycoheterotrophic Corallorhiza striata Species Complex (Orchidaceae: Epidendroideae) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Craig Francis Barrett, M. S. Evolution, Ecology, and Organismal Biology ***** The Ohio State University 2010 Dissertation Committee: Dr. John V. Freudenstein, Advisor Dr. John W. Wenzel Dr. Andrea D. Wolfe Copyright by Craig Francis Barrett 2010 ABSTRACT Corallorhiza is a genus of obligately mycoheterotrophic (fungus-eating) orchids that presents a unique opportunity to study phylogeography, taxonomy, fungal host specificity, and photosynthesis gene evolution. The photosysnthesis gene rbcL was sequenced for nearly all members of the genus Corallorhiza; evidence for pseudogene formation was found in both the C. striata and C. maculata complexes, suggesting multiple independent transitions to complete heterotrophy. Corallorhiza may serve as an exemplary system in which to study the plastid genomic consequences of full mycoheterotrophy due to relaxed selection on photosynthetic apparatus. Corallorhiza striata is a highly variable species complex distributed from Mexico to Canada. In an investigation of molecular and morphological variation, four plastid DNA clades were identified, displaying statistically significant differences in floral morphology. The biogeography of C. striata is more complex than previously hypothesized, with two main plastid lineages present in both Mexico and northern North America. These findings add to a growing body of phylogeographic data on organisms sharing this common distribution. To investigate fungal host specificity in the C. striata complex, I sequenced plastid DNA for orchids and nuclear DNA for fungi (n=107 individuals), and found that ii the four plastid clades associate with divergent sets of ectomycorrhizal fungi; all within a single, variable species, Tomentella fuscocinerea. -
Sensitive Species That Are Not Listed Or Proposed Under the ESA Sorted By: Major Group, Subgroup, NS Sci
Forest Service Sensitive Species that are not listed or proposed under the ESA Sorted by: Major Group, Subgroup, NS Sci. Name; Legend: Page 94 REGION 10 REGION 1 REGION 2 REGION 3 REGION 4 REGION 5 REGION 6 REGION 8 REGION 9 ALTERNATE NATURESERVE PRIMARY MAJOR SUB- U.S. N U.S. 2005 NATURESERVE SCIENTIFIC NAME SCIENTIFIC NAME(S) COMMON NAME GROUP GROUP G RANK RANK ESA C 9 Anahita punctulata Southeastern Wandering Spider Invertebrate Arachnid G4 NNR 9 Apochthonius indianensis A Pseudoscorpion Invertebrate Arachnid G1G2 N1N2 9 Apochthonius paucispinosus Dry Fork Valley Cave Invertebrate Arachnid G1 N1 Pseudoscorpion 9 Erebomaster flavescens A Cave Obligate Harvestman Invertebrate Arachnid G3G4 N3N4 9 Hesperochernes mirabilis Cave Psuedoscorpion Invertebrate Arachnid G5 N5 8 Hypochilus coylei A Cave Spider Invertebrate Arachnid G3? NNR 8 Hypochilus sheari A Lampshade Spider Invertebrate Arachnid G2G3 NNR 9 Kleptochthonius griseomanus An Indiana Cave Pseudoscorpion Invertebrate Arachnid G1 N1 8 Kleptochthonius orpheus Orpheus Cave Pseudoscorpion Invertebrate Arachnid G1 N1 9 Kleptochthonius packardi A Cave Obligate Pseudoscorpion Invertebrate Arachnid G2G3 N2N3 9 Nesticus carteri A Cave Spider Invertebrate Arachnid GNR NNR 8 Nesticus cooperi Lost Nantahala Cave Spider Invertebrate Arachnid G1 N1 8 Nesticus crosbyi A Cave Spider Invertebrate Arachnid G1? NNR 8 Nesticus mimus A Cave Spider Invertebrate Arachnid G2 NNR 8 Nesticus sheari A Cave Spider Invertebrate Arachnid G2? NNR 8 Nesticus silvanus A Cave Spider Invertebrate Arachnid G2? NNR -
Conservation Assessment for Pterospora Andromedea Nutt
Conservation Assessment For Pterospora andromedea Nutt. (Pine-drops) USDA Forest Service, Eastern Region Hiawatha National Forest November 2004 This Conservation Assessment was prepared to compile the published and unpublished information on Pterospora andromedea Nutt. This report provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It is an administrative study only and does not represent a management decision by the U.S. Forest Service. Although the best scientific information available was used and subject experts were consulted in preparation of this document and its review, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has any information that will assist in conserving this species, please contact the Eastern Region of the Forest Service – Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. Conservation Assessment for Pterospora andromedea ii Acknowledgements Outside Reviewers: We would like to thank our academic reviewers and agency reviewers outside of the United States Forest Service for their helpful comments on this manuscript. • Phyllis Higman, Botanist, Michigan Natural Features Inventory National Forest Reviewers: We also thank our internal National Forest reviewers for their suggestions and corrections and for providing element occurrences for their National Forests. Complete contact information is available under Contacts section. • Jan Schultz, Forest Plant Ecologist, on the Hiawatha National Forest • Sue Trull, Forest Botanist, on the Ottawa National Forest • Ian Shackleford, Botanist, on the Ottawa National Forest Herbarium and Heritage Data: We appreciate the sharing of occurrence information for this species from Heritage personnel both in the United States and Canada, along with the helpful assistance of Herbarium personnel.