The Dobsonflies, Fishflies, and Alderflies (Megaloptera)

Total Page:16

File Type:pdf, Size:1020Kb

The Dobsonflies, Fishflies, and Alderflies (Megaloptera) Stream Team Academy Fact Sheet #19 LIFE CYclES & NATURAL HISTORY OF AQUATIC INSECTS Part 7 – The Dobsonflies, Fishflies, and Alderflies (Megaloptera) Stream Team Academy An Educational Series For Stream Teams To Learn and Collect Fact Sheet Series #1 Tree Planting Guide By Paul Calvert #2 Spotlight on Big Muddy he Megaloptera is a small order light for a period of time before settling #3 Lewis & Clark comprised of two families, the to the bottom, while the corydalids show #4 Missouri Is Number One? T Corydalidae (dobsonflies and fishflies) and no photopositive tendencies, burrowing #5 Responsible ATV Use the Sialidae (alderflies). They are closely quickly into the substrate immediately #6 Headwater Streams #7 Whatology? related to the Neuroptera (lacewings after hatching and dropping. and spongillaflies), and were previously Megaloptera are holometabolous, #8 Exotic Does Not Mean Beauty #9 Wetlands lumped together with that order. Unlike undergoing a complete metamorphosis. #10 Stream Sedimentation the Neuroptera, all Megaloptera larvae Larvae go through 10 to 12 instars before #11 Emerald Ash Borer Found in are aquatic and they include some of the crawling out of the water and onto the Missouri largest aquatic insects. The larvae of bank to pupate. Some have been reported #12 Protecting Prairies = the corydalids are sometimes known as to travel over 150 feet from the water’s Protecting Streams hellgrammites or toe biters. edge to accomplish this feat. Some #13 Life Cycle & Natural History of Aquatic Insects (Part 1) species produce pupal chambers under LIFE CYCLE stones, stumps, or detritus; others in dry #14 Life Cycle & Natural History of orydalids use scent in their mating Aquatic Insects (Part 2) streambeds or the soil. Megaloptera pupae rituals, while the sialids use acoustical #15 Life Cycle & Natural History of C have free appendages and the abdomen Aquatic Insects (Part 3) signals like abdominal vibrations or is movable, a form known as exarate. In #16 Life Cycle & Natural History of tapping, similar to stoneflies, for mate most holometabolous insects, the pupae Aquatic Insects (Part 4) recognition and courtship. While the larval are capable of only limited movement. #17 Life Cycle & Natural History of stages of both are aquatic, the eggs, pupae, Aquatic Insects (Part 5) However, Megaloptera pupae are quite and adults are all terrestrial. #18 Life Cycle & Natural History of mobile and can defend themselves within Aquatic Insects (Part 6) Elongated eggs are deposited in the pupal chamber. Adults emerge after #19 Life Cycle & Natural History of masses on vegetation overhanging the about two weeks. The process from egg- Aquatic Insects (Part 7) water, large rocks projecting from the laying to adult emergence may take one to water, or manmade structures, like bridge two years for sialids, and up to five years Collect this entire educational series abutments. The eggs hatch at night for some corydalids. for future reference! Contact us at and, after 5 to10 days, the first instars 1-800-781-1989 if you’d like a copy Adults are relatively short-lived, of previous Fact Sheets or a binder drop into the water. Sialids appear to with a lifespan of just a few days. Once for storing them. be photopositive, swimming toward the emerged, some are active at night while others are active during the day. Sialids do not readily fly and remain close to where they emerge. Corydalids are active fliers. They may fly some distance from the water and are generally attracted to lights. With such short lifespans, adults mate quickly and die. The aquatic larva of a sialid species collected HABITAT from LaBarque Creek. orydalids are typically found in well- (Photo by Darlene Haun, Coxygenated streams and lakes, but Missouri Department of can also be found in productive ponds Conservation.) or swamps where dissolved oxygen may (continued on back) Stream Team Academy Fact Sheet #19 be low. Sialids are generally found in may be simple or segmented and, in the same habitats, but require mud or certain corydalids, are supplemented silt deposits and accumulated detritus with tufts of tracheal gills to increase the for burrowing. Although they are large surface area for oxygen transfer. Some invertebrates, several species can survive corydalids also have functioning posterior in intermittent streams by burrowing into spiracles which enable them to breathe the substrate during dry periods. Sialids when they leave the water to pupate or are generally classified as burrowers, while when dissolved oxygen is low. corydalids are classified as clingers or climbers. CONCLUSION Megaloptera larvae can be good FEEDING indicators of water quality. Corydalid egaloptera larvae are predacious species tend to be sensitive to changes Mfrom the time they hatch until they in dissolved oxygen while sialids can be pupate. They are indiscriminate, active somewhat tolerant of low oxygen levels. predators, feeding on aquatic insects, However, the species of both families annelids, crustaceans, and mollusks. play an important role as predators in the Because the digestive tract of adults is aquatic systems where they are found. reduced in size, they feed only on liquids. Megaloptera is one of our most interesting insect orders. They are the RESPIRATION only aquatic insect group that is aquatic egaloptera larvae can be during only the larval stage, while the distinguished from most beetle M remaining life stages are terrestrial. larvae fairly easily by their paired lateral The name means “large wing” and they abdominal gill filaments. These filaments are known for their clumsy flight. The males are also intimidating with their large tusks or pinchers. In the aquatic macroinvertebrate world, these are our charismatic megafauna. A ventral view of a hellgrammite. Note the An adult male dobsonfly displaying large tusks. large mandibles and tracheal gill tufts. (Photo by John Abbott, University of Texas.) (Photo courtesy of Jason Neuswanger, Troutnut.com.) Our next fact sheet will cover midges, mosquitoes, aquatic gnats, and flies (Diptera). Don’t forget to send your questions to [email protected] or call 1-800-781-1989. Sources: Freshwater Macroinvertebrates of Northeastern North America. Barbara L. Peckarsky et al. 1990. Aquatic Entomology–the Fishermen’s and Ecologists’ Illustrated Guide to Insects and Their Relatives. W. Patrick McCafferty. 1998..
Recommended publications
  • Aquatic Insects Are Dramatically Underrepresented in Genomic Research
    insects Communication Aquatic Insects Are Dramatically Underrepresented in Genomic Research Scott Hotaling 1,* , Joanna L. Kelley 1 and Paul B. Frandsen 2,3,* 1 School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] 2 Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84062, USA 3 Data Science Lab, Smithsonian Institution, Washington, DC 20002, USA * Correspondence: [email protected] (S.H.); [email protected] (P.B.F.); Tel.: +1-(828)-507-9950 (S.H.); +1-(801)-422-2283 (P.B.F.) Received: 20 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Simple Summary: The genome is the basic evolutionary unit underpinning life on Earth. Knowing its sequence, including the many thousands of genes coding for proteins in an organism, empowers scientific discovery for both the focal organism and related species. Aquatic insects represent 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. A lack of aquatic genomes is limiting research progress in the field at both fundamental and applied scales. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to empower future research.
    [Show full text]
  • Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
    Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • A New Fishfly Species (Megaloptera: Corydalidae: Chauliodinae) from Eocene Baltic Amber
    Palaeoentomology 003 (2): 188–195 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2020 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.3.2.8 http://zoobank.org/urn:lsid:zoobank.org:pub:20A34D9A-DC69-453E-9662-0A8FAFA25677 A new fishfly species (Megaloptera: Corydalidae: Chauliodinae) from Eocene Baltic amber XINGYUE LIU1, * & JÖRG ANSORGE2 1College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China �[email protected]; https://orcid.org/0000-0002-9168-0659 2Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahnstraße 17a, D-17487 Greifswald, Germany �[email protected]; https://orcid.org/0000-0002-1284-6893 *Corresponding author. �[email protected] Abstract and Sialidae (alderflies). Species of Megaloptera have worldwide distribution, but most of them occur mainly in The fossil record of Megaloptera (Insecta: Holometabola: subtropical and warm temperate regions, e.g., the Oriental, Neuropterida) is very limited. Both megalopteran families, i.e., Corydalidae and Sialidae, have been found in the Eocene Neotropical, and Australian Regions (Yang & Liu, 2010; Baltic amber, comprising two named species in one genus Liu et al., 2012, 2015a). The phylogeny and biogeography of Corydalidae (Chauliodinae) and four named species in of extant Megaloptera have been intensively studied in two genera of Sialidae. Here we report a new species of Liu et al. (2012, 2015a, b, 2016) and Contreras-Ramos Chauliodinae from the Baltic amber, namely Nigronia (2011). prussia sp. nov.. The new species possesses a spotted hind Compared with the other two orders of Neuropterida wing with broad band-like marking, a well-developed stem (Raphidioptera and Neuroptera), the fossil record of of hind wing MA subdistally with a short crossvein to MP, a Megaloptera is considerably scarce.
    [Show full text]
  • Living Water. Eno River State Park: an Environmental Education Learning Experience Designed for the Middle Grades. INSTITUTION North Carolina State Dept
    DOCUMENT RESUME ED 376 024 SE 054 365 AUTHOR Hartley, Scott; Woods, Martha TITLE Living Water. Eno River State Park: An Environmental Education Learning Experience Designed for the Middle Grades. INSTITUTION North Carolina State Dept. of Environment, Health, and Natural Resources, Raleigh. Div. of Parks and Recreation. PUB DATE Oct 92 NOTE 96p.; For other Environmental Education Learning Experiences, see SE 054 364-371. AVAILABLE ,FROM North Carolina Division of Parks and Recreation, P.O. Box 27687, Raleigh, NC 27611-7687. PUB TYPE Guides Classroom Use Teaching Guides (For Teacher)(052) EDRS PRICE MF01/PC04 Plus Postage. DESCRIPTORS Classification; Computation; Ecology; Entomology; Environmental Education; Experiential Learning; Field Trips; Grade 5; Grade 6; Integrated Activities; Intermediate Grades; Maps; *Marine Biology; Natural Resources; *Outdoor Activities; *Outdoor Education; Teaching Guides; Water Pollution; *Water Quality; *Water Resources IDENTIFIERS Dichotomous Keys; Environmental. Management; *North Carolina; pH; Rivers; State Parks; Water Quality Analysis; Watersheds ABSTRACT This learning packet, one in a series of eight, was developed by the Eno River State Park in North Carolina for Grades 5-6 to teach about various aspects of water life on the Eno River. Loose -leaf pages are presented in nine sections that contain: (1) introductions to the North Carolina State Park System, the Eno River State Park, and to the park's activity packet;(2) a summary of the activities that includes major concepts and objectives covered; (3) pre-visit activities on map trivia and dichotomous classification keys;(4) on-site activities on river flow, pH values, water bugs and river sediment;(5) post-visit activities on water pollution; (6)a list ol7 69 related vocabulary words; (7) park and parental permission forms for the visit; and (8) blank pages for taking notes.
    [Show full text]
  • New Species and Records of Corydalidae (Insecta: Megaloptera) from Myanmar
    Zootaxa 4306 (3): 428–436 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4306.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:3E1C83F4-54BB-4B9F-AC0F-467CB9CF0032 New species and records of Corydalidae (Insecta: Megaloptera) from Myanmar XINGYUE LIU1,3 & LIBOR DVORAK2 1Department of Entomology, China Agricultural University, Beijing 100193, China. 2Municipal Museum Marianske Lazne, Goethovo namesti 11, CZ–35301 Marianske Lazne, The Czech Republic. 3Corresponding author. E-mail: [email protected] Abstract Seven species of the family Corydalidae (Insecta: Megaloptera) are newly recorded from Myanmar, including a new spe- cies of the dobsonfly genus Protohermes van der Weele, 1907, P. burmanus sp. nov. A total of 18 species of Megaloptera are now known from Myanmar. Key words: Corydalinae, Chauliodinae, Protohermes, taxonomy, Burma Introduction Myanmar is a biodiversity hotspot with high levels of species richness and endemism (Rao et al. 2013). The Megaloptera (dobsonflies, fishflies, and alderflies), a holometabolous insect order, currently includes ca. 380 species in the world (Yang & Liu 2010; Liu et al. 2016). The fauna of this order is extraordinarily rich in the Oriental region, comprising more than 200 described species. The northern portion of Myanmar is located within the diversification centre of the Asian Megaloptera as proposed by Yang & Liu (2010). However, due to lack of intensive collecting, the fauna of Megaloptera from Myanmar is relatively poorly known. The earliest records of Megaloptera of the family Corydalidae from Myanmar are by Kimmins (1948) describing Protohermes subnubilus and mentioning P.
    [Show full text]
  • Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
    REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en­ dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co­ leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo­ cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution­
    [Show full text]
  • Volume 2, Chapter 12-8: Terrestrial Insects: Holometabola-Megaloptera
    Glime, J. M. 2017. Terrestrial Insects: Holometabola – Megaloptera and Neuroptera. Chapt. 12-8. In: Glime, J. M. Bryophyte 12-8-1 Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-8 TERRESTRIAL INSECTS: HOLOMETABOLA – MEGALOPTERA AND NEUROPTERA TABLE OF CONTENTS MEGALOPTERA – Alderflies, Dobsonflies, and Fishflies ............................................................................. 12-8-2 NEUROPTERA - Lacewings ........................................................................................................................... 12-8-3 Osmylidae ................................................................................................................................................. 12-8-3 Chrysopidae .............................................................................................................................................. 12-8-4 Summary .......................................................................................................................................................... 12-8-6 Acknowledgments ............................................................................................................................................ 12-8-6 Literature Cited ...............................................................................................................................................
    [Show full text]
  • Chapter X —Order Megaloptera
    Chapter X —Order Megaloptera (Alderflies- , Dobsonflies- , Fishflies- ) • (Williams & Feltmate, 1992) • Superphylum Arthropoda • (jointed-legged metazoan animals [Gr, arthron = joint; pous = foot]) • Phylum Entoma • Subphylum Uniramia • (L, unus = one; ramus = branch, referring to the unbranched nature of the ap- pendages) • Superclass Hexapoda • (Gr, hex = six, pous = foot) • Class Insecta • (L, insectum meaning cut into sections) • Subclass Ptilota • Infraclass Neopterygota The order Megaloptera is a small order of insects in the infraclass Neoptera, division Endoptery- gota. The Megaloptera are closely related to the Neuroptera (spongillaflies). The Megaloptera comprise only two families, the Corydalidae (fishflies and dobsonflies) and the Sialidae (alderflies). Larvae of all species of Megaloptera are aquatic and attain the largest size of all aquatic insects. Larval Corydalidae are sometimes called hellgrammites or toe biters. The adult Corydalidae are large, having a wing span of up to 16 cm (Megaloptera = “large wing”). Life History Females of this holometabolous order lay elongate eggs in masses on vegetation overhanging the aquatic habitat, on large rocks projecting from the water, or on bridge abutments. After about a week at cool temperatures, eggs hatch at night and first-instar larvae fall into the water. As young larvae swallow air, gas bubbles form in their guts, possibly providing the buoyancy neces- sary to transport to riffles first instars that land in pools. The metabolic consequences of this air bubble are unknown for most species. Megalopteran larvae go through 10-12 instars before crawling out of the water onto shore to pupate. Some have been reported to pupate as far as 50 metres from the shore. Bioassessment of Freshwaters using Benthic Macroinvertebrates- A Primer X-1 Most sialids have one- or two-year life cycles, whereas corydalids in cold mountain streams and in intermittent streams may live for up to five years.
    [Show full text]
  • Identification of Freshwater Invertebrates
    Identification of Freshwater Invertebrates © 2008 Pennsylvania Sea Grant To request copies, please contact: Sara Grisé email: [email protected] Table of Contents A. Benthic Macroinvertebrates……………………….………………...........…………1 Arachnida………………………………..………………….............….…2 Bivalvia……………………...…………………….………….........…..…3 Clitellata……………………..………………….………………........…...5 Gastropoda………………………………………………………..............6 Hydrozoa………………………………………………….…………....…8 Insecta……………………..…………………….…………......…..……..9 Malacostraca………………………………………………....…….…....22 Turbellaria…………………………………………….….…..........…… 24 B. Plankton…………………………………………...……….………………............25 Phytoplankton Bacillariophyta……………………..……………………...……….........26 Chlorophyta………………………………………….....…………..........28 Cyanobacteria…...……………………………………………..…….…..32 Gamophyta…………………………………….…………...….…..…….35 Pyrrophycophyta………………………………………………………...36 Zooplankton Arthropoda……………………………………………………………....37 Ciliophora……………………………………………………………......41 Rotifera………………………………………………………………......43 References………………………………………………………….……………….....46 Taxonomy is the science of classifying and naming organisms according to their characteris- tics. All living organisms are classified into seven levels: Kingdom, Phylum, Class, Order, Family, Genus, and Species. This book classifies Benthic Macroinvertebrates by using their Class, Family, Genus, and Species. The Classes are the categories at the top of the page in colored text corresponding to the color of the page. The Family is listed below the common name, and the Genus and Spe- cies names
    [Show full text]
  • Megaloptera: Corydalidae: Neohermes Banks) Discovered from North America by a Systematic Revision, with Phylogenetic and Biogeographic Implications
    RESEARCH ARTICLE A New Fishfly Species (Megaloptera: Corydalidae: Neohermes Banks) Discovered from North America by a Systematic Revision, with Phylogenetic and Biogeographic Implications Xingyue Liu1*, Shaun L. Winterton2 1 Department of Entomology, China Agricultural University, Beijing, 100193, China, 2 California State Collection of Arthropods, California Department of Food & Agriculture, Sacramento, California, United States of America * [email protected] OPEN ACCESS Abstract Citation: Liu X, Winterton SL (2016) A New Fishfly The taxonomy of Megaloptera from the Nearctic region is fairly well known and their faunal Species (Megaloptera: Corydalidae: Neohermes diversity has been largely surveyed, even in relatively remote regions. However, the evolu- Banks) Discovered from North America by a tionary history of Nearctic Megaloptera is still poorly known with phylogenetic and biogeo- Systematic Revision, with Phylogenetic and Biogeographic Implications. PLoS ONE 11(2): graphic studies lacking. In this paper, we report a new fishfly species of the endemic North e0148319. doi:10.1371/journal.pone.0148319 American genus Neohermes Banks, 1908, increasing the total number known of species to Editor: Michael E. Douglas, University of Arkansas, six. This new species (Neohermes inexpectatus sp. nov.) is currently known to occur only in UNITED STATES California (USA) and is apparently confined to the Northern Coastal Range. The new spe- Received: September 28, 2015 cies resembles the three Neohermes species from eastern North America based on the rel- atively small body size and the presence of female gonostyli 9. However, our phylogenetic Accepted: January 14, 2016 analysis using adult morphological data recovered the new species as the sister species to Published: February 17, 2016 the remaining Neohermes, which includes two species from western North America and Copyright: This is an open access article, free of all three from eastern North America.
    [Show full text]
  • New Distribution Records of Fishflies (Megaloptera: Corydalidae) for Kentucky, U.S.A.1
    40 ENTOMOLOGICAL NEWS Volume 117, Number 1, January and February 2006 41 ACKNOWLEDGEMENTS NEW DISTRIBUTION RECORDS OF FISHFLIES The authors are deeply indebted to Professors J. H. Martin and R. L. Blackman for providing a (MEGALOPTERA: CORYDALIDAE) visiting position to the first author. Professor Blackman also helped examine the specimens. Miss 1 Kun Guo collected some of the material used in this study and Miss Caiping Liu prepared the micro- FOR KENTUCKY, U.S.A. scope slides. The project is supported by the National Natural Sciences Foundation of China (Grant 2 3 4 5 No.30270171, No. 30570214), and National Science Fund for Fostering Talents in Basic Research Donald C. Tarter, Dwight L. Chaffee, Charles V. Covell Jr., and Sean T. O’Keefe (No. NSFC-J0030092). KEY WORDS: Megaloptera, fishflies, Kentucky, county records, Kentucky, U.S.A. ABSTRACT: New distributional records (74) of larval fishflies are reported for Kentucky. Twenty- LITERATURE CITED five new county records were added for Nigronia serricornis (Say), and forty-two new county records were added for N. fasciatus (Walker), the most widely distributed fishfly in Kentucky (54 Agarwala, B. K. and D. N. Raychaudhuri. 1977. Two new species of aphids (Homoptera: Aphi- counties). These two species were sympatric in 14 streams in eastern Kentucky. One new county didae) from Sikkim, North east India. Entomon 2(1): 77-80. record was added for Neohermes concolor (Davis). Four new county records were noted for Chau- Baker, A. 1920. Generic classification of the hemipterous family Aphididae. Bulletin of the United liodes pectinicornis (Linnaeus), while two new county records were added for C.
    [Show full text]