Diploma Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Diploma Thesis IEKP-KA/2012-15 A High-Rate Beam Test for the CMS Pixel Detector Phase I Upgrade Simon Spannagel Diplomarbeit Fakultät für Physik Institut für Experimentelle Kernphysik (IEKP) Referent: Prof. Dr. Ulrich Husemann Korreferent: Prof. Dr. Guido Drexlin Karlsruhe, 2. November 2012 KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gesellschaft www.kit.edu Deutsche Zusammenfassung In den n¨achsten Jahren wird die Kollisionsenergie sowie die instantane Luminosit¨at des Large Hadron Colliders (LHC) [EB08] stetig erh¨oht, um mehr Teilchenkollisionen in den einzelnen Experimenten erzeugen zu k¨onnen. Besonders die h¨ohere Energie ver¨andert die Wirkungsquerschnitte verschiedener Reaktionen, z.B. der Higgs-Produktion. Dies erm¨oglicht den Experimenten, genauere Messungen von Eigenschaften der produzierten Teilchen durchzufuhren.¨ Nach der Konsolidierung des Beschleunigers im sogenannten Long Shutdown 1 (LS1) wird der LHC die doppelte Design-Luminosit¨at von bis zu L = 2 × 1034 cm−2s−1 bei einer Schwerpunktsenergie von 13 TeV liefern [Zim09]. Die h¨ohere Luminosit¨at zieht jedoch auch mehr gleichzeitig eintretende Teilchenkollisionen (Pileup) nach sich, die von den Experimenten separiert werden mussen.¨ Momentan muss der Compact Muon Solenoid (CMS) Detektor [C+08] bei einer instantanen Luminosit¨at von L = 7:5 × 1033 cm−2s−1 die einzelnen Teilchenspuren von ungef¨ahr 35 simultanen Kollisionen trennen; bei doppelter Design-Luminosit¨at sowie h¨oherer Schwerpunktsenergie und gr¨oßeren Wirkungsquerschnitten wird diese Zahl jedoch auf ca. 100 Pileups ansteigen [CMS12]. Um diesen st¨andig steigenden Anforderungen gerecht zu werden, mussen¨ Teile des CMS-Detektors verbessert oder sogar erneuert werden. Beispielsweise wird der Pixeldetektor im sogenannten Phase I Upgrade Ende 2016 vollst¨andig ersetzt. Sowohl das Silizium- Sensormaterial muss aufgrund der Strahlungssch¨aden ausgetauscht werden, als auch der Auslesechip (Read Out Chip, ROC), der die Signalverarbeitung ubernimmt.¨ Der aktuelle ROC kann bei h¨oherer Okkupanz nicht ohne erhebliche Datenverluste und Ineffizienzen betrieben werden, da zum einen nicht genugend¨ Speicherzellen zum Zwischenspeichern der getroffenen Pixel und zum anderen nicht genug Bandbreite zum Ubertragen¨ des erh¨ohten Datenaufkommens vorhanden sind [K¨as08, Mei11]. Aus diesen Grunden¨ wurde ein neuer Auslesechip konstruiert. Der sogenannte PSI46dig ROC verfugt¨ uber¨ einen gr¨oßeren Zwischenspeicher und kann die Ubertragung¨ der anfallenden Datenmengen uber¨ eine digitale 400 MHz Schnittstelle bew¨altigen sowie die Auslese-Totzeit reduzieren. Auch der Token Bit Manager (TBM), der die Daten von mehreren ROCs bundelt¨ und fur¨ die Trigger-Signalverarbeitung zust¨andig ist, muss entsprechend angepasst und erweitert werden. Die Effizienz und das Verhalten des neuen PSI46dig ROCs mussen¨ unter Betriebsbedingungen genau getestet und verstanden werden, bevor dieser in Serienproduktion gehen kann. Sogenannte Strahltests, also Detektortests in einem Teilchenstrahl, bieten einen geeigneten Weg, um neue Detektor-Komponenten zu qualifizieren. Der zu untersuchende Detektor (auch Device Under Test (DUT) genannt) wird dabei in einem Teilchenstrahl mit genau definierten Eigenschaften und Charakteristika platziert, der dazu dient, die Betriebsbedingungen im CMS-Detektor nach dem Phase I Upgrade zu simulieren. Ublicherweise¨ kommen hierfur¨ sogenannte Strahlteleskope zum Einsatz, die aus mehreren Sensorlagen bestehen. Teilchenspuren werden vom Teleskop aufgenommen und mit den Messungen im DUT verglichen. Dieser Vergleich erlaubt Ruckschl¨ usse¨ auf die Effizienz des untersuchten Detektors. Um die Effizienz des neuen CMS ROCs bei hohen Teilchenraten zu vermessen, wurde mehrere sogenannte Hochraten-Strahltest geplant. Der erste dieser Tests wurde im Juli 2012 durchgefuhrt,¨ ein weiterer ist fur¨ Ende Oktober 2012 geplant. Fur¨ beide Tests wird der Strahlplatz H4IRRAD [BC11] des Super Proton Synchrotron (SPS)-Beschleunigers am CERN verwendet, der Protonen mit einer Energie von etwa 320 GeV bereitstellt. Der erste der beiden Strahltests am SPS wurde Ende Juli 2012 durchgefuhrt¨ und diente haupts¨achlich der Qualifizierung des Teilchenstrahls, der neu entwickelten Strahlteleskope sowie der Ausleseelektronik. Zudem wurde die Leistungsf¨ahigkeit der Analysesoftware mithilfe der aufgenommenen Detektordaten uberpr¨ uft¨ und verbessert. Zwei verschiedene Teleskopgeometrien mit jeweils acht ROCs wurden entwickelt und gebaut. W¨ahrend bei der ersten alle Teleskopebenen senkrecht auf dem eintreffenden Teilchenstrahl stehen, sind diese in der zweiten Version in zwei Richtungen gegen den Strahl geneigt, damit durchfliegende Teilchen nicht nur einzelne, sondern mehrere Pixel treffen. Diese k¨onnen in der Analyse zu sogenannten Clustern verbunden und den einzelnen Teilchen zugeordnet werden k¨onnen. Dies dient der Verbesserung der Ortsaufl¨osung und simuliert die Bedingungen im CMS-Detektor, wo eintreffende Teilchen durch das Magnetfeld abgelenkt werden und auch die im Silizium erzeugte Ladungstr¨ager in einem Winkel von etwa 25◦ zur Sensoroberfl¨ache driften [CMS10]. Dieser Winkel wird entsprechend der verursachenden Kraft Lorentzwinkel genannt. Beide Teleskope werden ohne TBM betrieben und direkt von den Ausleseplatinen angesprochen, da der digitale TBM08 noch nicht produziert wurde. Im Juli-Strahltest wurden zwei gekoppelte Ausleseplatinen (auch Testboards genannt) verwendet. Das Altera Cyclone Testboard wurde vom Paul-Scherrer-Institut (PSI) fur¨ Labortests des analogen PSI46v2 ROCs entwickelt und kann deshalb nicht ohne Modifikationen zur Auslese der digitalen Chips verwendet werden. Deshalb wurde zus¨atzlich ein auf dem leistungsstarken Xilinx Spartan-6- Prozessor beruhendes Testboard [Xil12] verwendet, um die Detektordaten aufzubereiten. Fur¨ den Strahltest werden die Teleskope mit 2 mm × 2 mm großen Szintillatoren vor und hinter der ersten bzw. letzten Teleskopebene ausgestattet, die es erlauben, die Auslese des Teleskops nach einem Teilchendurchgang zu starten. Diese Auslesesignale werden ublicherweise¨ Trigger genannt und von der Trigger-Logikeinheit verarbeitet. Diese wurde fur¨ die Strahltests so konstruiert, dass Beginn und Ende des gepulsten Teilchenstrahls vom SPS erkannt und alle Triggersignale außerhalb dieses Zeitfensters ausgeblendet werden k¨onnen. Die Datennahme wird mit jedem neuen Puls gestartet und dauert 7 s. Dies erm¨oglicht sowohl eine automatisierte Datennahme als auch eine einfache Korrelation zwischen gespeicherten Triggersignalen und Detektordaten. Zur Analyse der Detektordaten wird die EUTelescope-Softwareumgebung eingesetzt [B+07b]. EU- Telescope ist ein Programmpaket, das speziell fur¨ die Analyse von Teleskop-Strahltests entwickelt wurde, in das ILCsoft Framework eingebettet ist und dessen Infrastruktur nutzt. Ein Vorteil von EUTelescope ist sein modularer Aufbau, in dem einzelne Softwareprozessoren dedizierte Aufga- ben in der Analysekette ubernehmen¨ und die verarbeiteten Daten anschließend an den n¨achsten Prozessor weitergeben. Dies erlaubt einen schnellen und flexiblen Aufbau von vollst¨andigen Teil- chenrekonstruktionen und Analyseketten. Lediglich das Dekodieren und Konvertieren der nativen Detektordaten in das verwendete Linear Collider I/O (LCIO) Datenformat muss vom jeweiligen Anwender des Pakets implementiert werden, was im Rahmen dieser Arbeit vorgenommen wurde. Mit dem CMSPixelDecoder wurde eine einheitliche Programmbibliothek fur¨ schnelles Dekodieren der Datenstr¨ome von CMS Pixel-ROCs entwickelt. Dieser ist sowohl fur¨ das Dekodieren der Daten von einzelnen PSI46 ROC in Laboraufbauten als auch der Datenstr¨ome von vollen Detektormodulen mit 16 ROCs oder den Strahlteleskopen ausgelegt. Der Dekodieralgorithmus wurde sowohl mit Daten aus Labortests als auch mit Daten, die w¨ahrend des Juli-Strahltests aufgenommen wurden, uberpr¨ uft¨ und die Dekodierstrategie fur¨ eine maximale Datenintegrit¨at angepasst. Der CMSPixelDecoder kann sowohl Daten aus analogen PSI46v2 Chips als auch digitale PSI46dig Daten dekodieren, beide ROCs k¨onnen hierfur¨ sowohl mit als auch ohne TBM betrieben werden. Dies erlaubt nicht nur die Nutzung in den Hochraten-Strahltests, sondern er¨offnet zahlreiche M¨oglichkeiten des Einsatzes in den verschiedenen Labormessungen oder anderen Strahltests der PSI46 ROCs. Um die Dekodierprozedur beeinflussen zu k¨onnen, werden mehrere Parameter bereitgestellt. Diese erm¨oglichen beispielsweise die Auswahl von einzelnen Ereignissen basierend auf bestimmten Qualit¨atskriterien wie fehlerfreien ROC-Kennungen oder korrekter Datenl¨ange des Ereignisses. Des Weiteren werden detaillierte Statis- tiken uber¨ den Dekodiervorgang erhoben und ausgegeben. Dies umfasst sowohl die Gesamtzahl der IV Ereignisse als auch der Zahl der einzelnen Pixeltreffer, fehlgeschlagener Adressdekodierungen oder detektierter ROC-Kennungen. Dies kann besonders nutzlich¨ sein, um Fehler in der Detektorauslese oder der Testboard-Firmware aufzuspuren.¨ Viele der bereits vorhandenen EUTelescope-Prozessoren konnten fur¨ die Analysekette verwendet werden wobei lediglich kleine Anderungen¨ vorgenommen werden mussten. Der CMSPixelReader- Prozessor zum Konvertieren des nativen Datenformats in das LCIO-Format wurde im Rahmen dieser Arbeit von Grund auf entwickelt. Er verwendet intern den CMSPixelDecoder zum Dekodieren der Rohdaten. Nach der Konvertierung werden die Daten mit Hilfe des CMSPixelCalibrateEvent- Prozessors kalibriert. Dieser nimmt eine Kalibrierung der einzelnen Signalh¨ohen anhand einer aufgenommenen
Recommended publications
  • How and Why Silicon Sensors Are Becoming More and More Intelligent?
    How and why silicon sensors are becoming more and more intelligent? Daniela Bortolettoa a Physics Department, University of Oxford Keble Road, Oxford, UK E-mail: [email protected] ABSTRACT: This paper describes the historical evolution of silicon detectors from simple strip configurations to hybrid pixel detectors for high energy physics applications. This development has been critical to maintain the necessary physics performance in the high-rate and high- density environment of the LHC. The importance of pixel detectors and their evolution for future projects and other fields is also described. KEYWORDS: Si microstrip and pixel detectors Contents 1. Introduction 1 2. Strip Sensors 2 3. Pixel Sensors 5 3.1 Hybrid pixel 6 3.2 Hybrid pixel for X-ray detection 8 4. Fully depleted Thick CCD 8 5. New Directions 9 6. Acknowledgments 10 1. Introduction Silicon is the dominant semiconductor material used in the production of position sensitive detectors for particle physics. The moderate band gap between the conduction and the valence band of 1.12 eV is large compared to the thermal energy at room temperature of 25.9 meV. Therefore cooling is necessary only in ultra-low noise applications or when required to mitigate radiation damage. The detection of minimum ionizing particles (MIP) is based on ionisation or excitation of atoms in the medium caused by the passage of charged particles. The energy required to create an electron-hole (e-h) pair is 3.6 eV yielding an ionization of about 80 e- h/µm. Thus silicon detector can be quite thin compared with gaseous detectors.
    [Show full text]
  • Pixel Detectors
    Pixel Detectors N. Wermes 1 Physikalisches Institut der Universitat¨ Bonn, Germany Abstract mance and radiation tolerance to particle fluences 15 ¡2 as high as 10 neq=cm . At present, these demands Pixel detectors for precise particle tracking in high are only met by so-called hybrid pixel detectors, for energy physics have been developed to a level of ma- which the particle sensing element, the sensor, and turity during the past decade. Three of the LHC de- the integrated electronics circuitry, the readout chip, tectors will use vertex detectors close to the inter- are separate entities. They are mated by a hybridiza- action point based on the hybrid pixel technology tion technique, known as bump and flip-chip tech- which can be considered the ‘state of the art‘ in this nology. All of the LHC-collider-detectors ALICE field of instrumentation. A development period of al- [1,2], ATLAS [3,4], and CMS [5,6], LHCb (for the most 10 years has resulted in pixel detector modules RICH system) [7] at the LHC, and the CERN fixed which can stand the extreme rate and timing require- target experiment NA60 [8], employ the hybrid pixel ments as well as the very harsh radiation environment technique to build large scale (up to »2m2) pixel de- at the LHC without severe compromises in perfor- tectors. Pixel area sizes are typically 50 £ 400 ¹m2 mance. From these developments a number of differ- as for ATLAS or 100 £ 150 ¹m2 as for CMS. The ent applications have spun off, most notably for bio- detectors are arranged in cylindrical barrels of 2 to 3 medical imaging.
    [Show full text]
  • Développement D'une Caméra À Rayons X Ultra-Rapide Utilisant Des Détecteurs À Pixels Hybrides
    CPPM-T-2011-01 UNIVERSIT E´ DE LA M EDITERRAN´ EE´ AIX-MARSEILLE II FACULT E´ DES SCIENCES DE LUMINY 163, avenue de Luminy 13288 Marseille Cedex 09 TH ESE` DE DOCTORAT Sp´ecialit´e : Instrumentation pr´esent´ee par Arkadiusz DAWIEC en vue dobtenir le grade de docteur de l’Universit´ede la M´editerran´ee D´eveloppement d’une cam´era X couleur ultra-rapide `apixels hybrides tel-00631274, version 1 - 12 Oct 2011 Development of an ultra-fast X-ray camera using hybrid pixel detectors Soutenue le 4 mai 2011, devant le jury compos´ede : MrJean-Fran¸coisBERAR Rapporteur MrJean-ClaudeCLEMENS Examinateur Mr Bernard DINKESPILER Co-encadrant MrWojciechDULINSKI Examinateur MrRichardJACOBSSON Rapporteur Mr Eric KAJFASZ Examinateur MrChristianMOREL Directeurdeth`ese tel-00631274, version 1 - 12 Oct 2011 Acknowledgements I would like to express my gratitude to many people who have helped me and made this thesis possible. First and foremost I want to thank my thesis supervisor, Professor Christian Morel, leader of the imXgam group, for his motivation, patience and support during my research and thesis-writing times. I would like to thank my thesis committee: Jean-Fran¸cois B´erar, Jean-Claude Cl´emens, Bernard Dinkespiler, Wojciech Dulinski, Richard Jacobsson and Eric Kajfasz, for their insightful comments and questions. My endless gratitude goes to my co-supervisor Bernard Dinkespiler, who was a great mentor, source of knowledge and new ideas. My sincere thanks also goes to Jean-Claude Cl´emens, who was always open for a fruitful discussion and willing to share his knowledge. It was a real privilege to work with them.
    [Show full text]
  • Trends in Pixel Detectors
    Trends in Pixel Detectors: Tracking and Imaging Norbert Wermes (Invited Paper) Abstract— For large scale applications, hybrid pixel detectors, with present day semiconductor detectors. For applications with in which sensor and read-out IC are separate entities, constitute lower demands on the spatial resolution (P SF ∼5-10µm) the state of the art in pixel detector technology to date. They but with requirements on real time and time resolved data have been developed and start to be used as tracking detectors and also imaging devices in radiography, autoradiography, protein acquisition, semiconductor pixel detectors are very attractive. crystallography and in X-ray astronomy. A number of trends and Very thin detector assemblies are mandatory for vertex detec- possibilities for future applications in these fields with improved tors at collider experiments, in particular for the planned linear performance, less material, high read-out speed, large radiation e+e− collider. This imposes high demands on the detector tolerance, and potential off-the-shelf availability have appeared development. While silicon is almost a perfect material for and are momentarily matured. Among them are monolithic or semi-monolithic approaches which do not require complicated particle physics detectors, allowing the shaping of electric fields hybridization but come as single sensor/IC entities. Most of by tailored impurity doping, the need of high photon absorption these are presently still in the development phase waiting to efficiency in radiological applications requires the study and be used as detectors in experiments. The present state in pixel use of semiconductor materials with high atomic charge, such detector development including hybrid and (semi-)monolithic pixel as GaAs or CdTe.
    [Show full text]
  • Arxiv:1705.10150V3 [Physics.Ins-Det] 24 Mar 2018 3.2 3D-Si Sensors
    A review of advances in pixel detectors for experiments with high rate and radiation Maurice Garcia-Sciveres1 and Norbert Wermes2 1Lawrence Berkeley National Laboratory, Berkeley, U.S. 2University of Bonn, Bonn, Germany Abstract The Large Hadron Collider (LHC) experiments ATLAS and CMS have estab- lished hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detec- tor designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments. Keywords: semiconductor detectors, tracking detectors, pixel detectors, radiation damage, radiation hard CMOS sensors, hybrid pixels PACS: 29.40.Wk, 29.40.Gx Contents 1 Pixel detectors at the heart of particle physics experiments: demands, challenges and concepts 3 2 Space–time point resolution 5 2.1 Demands and current directions . .5 2.2 Space point and direction measurements . .6 2.3 Time measurement . 11 3 Pixel sensors and hybridization 16 3.1 Planar pixel sensors . 17 arXiv:1705.10150v3 [physics.ins-det] 24 Mar 2018 3.2 3D-Si sensors .
    [Show full text]
  • Studies on the Response Behaviour of Pixel Detector Prototypes at High Collision Rates for the CMS Experiment
    IEKP-KA/2015-22 Studies on the response behaviour of pixel detector prototypes at high collision rates for the CMS experiment Zur Erlangung de akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakult¨atf¨urPhysik des Karlsruher Institutes f¨urTechnologie genehmigte DISSERTATION von Dipl.-Phys. Andreas Kornmayer aus Oberharmersbach Tag der mundlichen¨ Prufung:¨ 04.12.2015 Referent: Prof. Dr. Thomas Muller¨ Korreferent: Prof. Dr. Ulrich Husemann Contents 1 Introduction 7 2 The LHC and the CMS Detectors 9 2.1 The Large Hadron Collider . .9 2.2 Luminosity . 10 2.3 The Compact Muon Solenoid . 11 2.4 The Phase 1 Pixel Upgrade . 13 2.4.1 Upgrade Mechanics . 13 2.4.2 Electronics Upgrade . 14 3 Semiconductor Tracking Detectors 17 3.1 Semiconductor Physics . 17 3.1.1 Intrinsic semiconductors . 19 3.2 Extrinsic semiconductors . 20 3.2.1 pn-junction . 21 3.2.2 pn-junction with applied voltage . 24 3.3 Silicon particle tracking detectors . 24 3.3.1 Working principle of silicon tracking detectors . 25 3.3.2 Sensor Concepts . 25 3.3.3 Hybrid Pixel Detectors . 26 3.3.4 Charge Sharing . 28 3.3.5 Spatial Resolution . 29 3.4 Radiation Damage in Semiconductors . 30 4 The CMS Pixel Readout Chip 33 4.1 The PSI46v2 Readout Chip (ROC) . 33 4.1.1 Double Column Readout . 35 4.1.2 ROC Readout Encoding . 37 4.2 Evolution from analogue to digital ROC . 37 4.2.1 The CMS PSI46digV2.1respin . 37 4.2.2 The Digital Readout Format . 40 4.2.3 Data encoding .
    [Show full text]
  • Testmessungen Mit Aktiven Pixelsensoren Für Den Ausbau Des ATLAS Pixeldetektors
    Bachelor’s Thesis Testmessungen mit aktiven Pixelsensoren für den Ausbau des ATLAS Pixeldetektors Test measurements with active pixel sensors for the upgrade of the ATLAS pixel detector prepared by Tobias Wolfgang Günter Westphal from Nienburg/Weser at the II. Physikalischen Institut Thesis number: II.Physik-UniGö-BSc-2015/08 Thesis period: 13th April 2015 until 20th July 2015 First referee: Prof. Dr. Arnulf Quadt Second referee: Priv.-Doz. Dr. Jörn Große-Knetter Contents 1. Introduction 1 2. Experimental Setup 3 2.1. Basics of the Large Hadron Collider . 3 2.2. The ATLAS Experiment . 4 2.2.1. Inner Detector . 5 2.2.2. Calorimeter System . 6 2.2.3. Muon Chambers . 8 3. Silicon Pixel Sensors 9 3.1. n-in-p Design . 9 3.2. Active Sensor . 10 4. Measurement Setup 13 4.1. Front-End I4 . 13 4.2. USBpix Read-Out System . 14 4.3. STcontrol . 17 4.4. Bonn ATLAS Readout System . 17 4.5. Standard Scans . 18 5. Results 23 5.1. STcontrol Tuning . 23 5.2. pyBAR Tuning . 24 5.3. Comparison of STcontrol and pyBAR . 25 5.3.1. Injection Calibration . 25 5.3.2. Threshold Scan . 26 5.3.3. ToT Verification . 30 5.3.4. Complete Threshold Tuning . 32 5.4. Scan/Tuning Duration . 32 5.5. Active Sensor . 35 iii Contents 6. Discussion 39 6.1. Comparison of STcontrol and pyBAR . 39 6.1.1. Injection Calibration . 39 6.1.2. Threshold Scan . 39 6.1.3. ToT Verification . 40 6.1.4. Complete Threshold Tuning . 41 6.2.
    [Show full text]
  • A Hybrid Pixel Detector ASIC with Energy Binning for Real-Time, Spectroscopic Dose Measurements
    Thesis for the Degree of Doctor of Technology Sundsvall 2012 A Hybrid Pixel Detector ASIC with Energy Binning for Real-Time, Spectroscopic Dose Measurements Winnie Sze-Wing Wong Supervisors: Professor Christer Frödjh Dr. Michael Campbell Electronics Design Division, in the Department of Information Technology and Media Mid Sweden University, SE-851 70 Sundsvall, Sweden ISSN 1652-893X ISBN 978-91-87103-20-9 Mid Sweden University Doctoral Thesis 128 Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av doktors examen i elektronik onsdagen den 30 maj 2012, klockan 13.00 i sal O102, Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska. A Hybrid Pixel Detector ASIC with Energy Binning for Real-Time, Spectroscopic Dose Measurements Winnie Sze-Wing Wong c Winnie Sze-Wing Wong, 2012 Electronics Design Division, in the Department of Information Technology and Media Mid Sweden University, SE-851 70 Sundsvall Sweden Telephone: +46 (0)60 148422 Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2012 to my parents and my sister page | iii The first page of this thesis was written on the first day of proton-proton collisions in the LHC. No, I didn’t work on the LHC, but being at CERN on that very historic day was catalytic. Dosepix is the result of an enormous team effort. I would like to ex- press my deepest gratitude to everyone who has worked on this project and supported our efforts. It was truly a privilege working with you. To IBA Dosimetry, the German Federal Ministry of Economics and Technology, and Marie Curie Actions (ELACCO project): thank you for the generous financial support of work on the Dosepix Project.
    [Show full text]
  • Absorptive Capacity 280 Acquired Knowledge 49
    317 Index a Atomic Spectroscopy And Collisions Using absorptive capacity 280 Slow Antiprotons (ASACUSA) 165 acquired knowledge 49 a toroidal LHC apparatus (ATLAS) 82, 199 acquisition, of skills 55 ADA language 154 b adaptability 5, 6 backup 79 Adobe 79 battle-field awareness systems 154 advanced resource connector (ARC) 93 Bayh–Dole Act 260 aeroplane design 141 Beath’s analysis 285 aerosol chemistry 184 Big Data African university of science and technology – analysis 307 (AUST) 220 – analytics 180, 251–253 airborne collision avoidance systems – applications in medicine 252 154 – computational modelling in medicine 252 Airborne Collision Avoidance System X – healthcare singularity 251 (ACAS X) 154 –‘long-tail medicine’ drugs 253 airborne software 154 biomimicry 190 Airbus 380 143 Boeing 747 143 – CFD simulation 147 Boeing Company 146, 147 aircraft movement at peak traffic 155 bounded rationality concept 233 Air Data Monitor (ADM) 154 brain drain 1 airguns 98 B-Spline (Basis Spline) 150 air traffic control chart 155 bump bonds 200 Air Traffic Control (ATC) system 155 – interconnect technology 213 A large ion collider experiment (ALICE) bureaucratic regulatory environments 240 199 American Physical Society (APS) 217, 218 c analytical skill 8 CAD applications in aircraft design, and antimatter 159 manufacturing 152 – and CERN 162–164 CAD software 149, 150 – energy 167 cancer therapy ‘toolbox’ 168 – research 169 capacitor 104 Antiproton Cell Experiment (ACE) 169 carbon cycles 184 Antiproton Decelerator (AD) 164 career development 52 – at CERN 165 Cargo Smoke Detector System (CSDS), 154 Apple 97 Ceefax 70 Apple’s version of operating system central processing unit (CPU) 108 (‘Mavericks’)79 central receiver systems, STE technologies 121 astronomy, grid 86 – reflecting elements, helisotats reflect 121 From Physics to Daily Life: Applications in Informatics, Energy, and Environment, First Edition.
    [Show full text]
  • The PILATUS 1M Detector a Novel Large Area Pixel Detector
    Doctoral Thesis ETH No. 16289 The PILATUS 1M Detector A Novel Large Area Pixel Detector A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctoral of Natural Sciences presented by Gregor Hülsen-Bollier Diplom Physik, University of Erlangen-Nürnberg bom April 16th, 1971 citizen of Germany accepted on the recommendation of Prof. Dr. Ralph A. Eichler, examiner Prof. Dr. Fritz K. Winkler, second examiner Dr. Roland Horisberger, third examiner PSI, Villigen, 2005 Contents 1 Summary 1 1.1 Summary 1 1.2 Zusammenfassung 3 2 Introduction 5 2.1 Introduction to Protein Crystallography 6 2.2 The Ideal Detector 15 2.3 CCDs and Hybrid Pixel Area Detectors 16 2.3.1 Large Area CCD Detectors 17 2.3.2 Hybrid Pixel Array Detectors 21 2.3.3 Performance of CCDs and PADs 31 3 The PILATUS IM Detector 35 3.1 The PILATUS IM Detector and its Building Blocks 35 3.1.1 Sensor 36 3.1.2 Bump Bonding 36 3.1.3 CMOS Chip 36 3.1.4 Radiation Tolerance, Chip Technology and Defects 39 3.1.5 Detector Assembly 41 3.2 Detector Control 44 3.2.1 Read-out Sequence 44 3.2.2 Hardware 44 3.2.3 Software 46 4 Calibration of the PILATUS IM Detector 49 4.1 Threshold Equalization Procedure 49 4.2 Flatfleld Calibration 51 4.2.1 Experiment 51 4.2.2 Calculation 52 4.2.3 Results 54 4.3 Distortion Calibration of the PILATUS IM Detector 57 5 Detector Performance 59 5.1 Counting Statistics of Flatfleld Images 59 5.1.1 Theoretical Counting Statistics for an Ideal Detector 59 l 11 CONTENTS 5.1.2 Statistics of Flatfleld Measurements with the PILATUS 1M Detector .
    [Show full text]
  • Experience and Results from the 6 Megapixel PILATUS System
    Experience and Results from the 6 Megapixel PILATUS System Anna Bergamaschi, Christian Broennimann, Eric Eikenberry, Beat Henrich 1, Miroslav Kobas, Philipp Kraft, Bernd Schmitt Paul Scherrer Institut 5232 Villigen PSI, Switzerland PILATUS detector systems operate in single photon counting mode and are based on the newly developed hybrid-pixel technology [8], [9], [10] and [11]. The main difference to existing detectors is that X-rays are directly transformed into electric charge and processed in the CMOS readout chips. This design shows no leakage current or readout noise and leads to a high dynamic range of 1,000,000 (20 bits) per pixel, short readout times of less than 3.5 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The quantum efficiency of the 0.32 mm thick silicon sensor is optimal for experiments in the energy range from 3 to 15 keV, however the detectors can be used for energies of up to 40 keV. Using the paralyzable counter model a dead time of 200.4 ns (standard gain settings) was measured [7]. This leads to a counting rate of almost 2x10 6 photons/pixels/s, well suited to handle the high flux of modern synchrotron light sources. Keywords: Hybrid pixel detector, Single Photon Counting, Macromolecular Crystallography The 16th International Workshop on Vertex detectors Lake Placid, NY, USA 23-28 September, 2007 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it The PILATUS detector system Beat Henrich 1.
    [Show full text]
  • A New Pixel Detector for the CMS Experiment
    A New Pixel Detector for the CMS Experiment Teilchenphysik-Kolloquium Universität Heidelberg, May 8, 2012 Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu The Large Hadron Collider: Present and Future Pixel Detectors for Collider Experiments The CMS Pixel Detector The CMS Phase 1 Pixel Upgrade CMS Pixel Upgrade: Current Status and Plans 2 05/08/2012 A New Pixel Detector for the CMS Experiment Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP) The Large Hadron Collider: Present and Future 3 05/08/2012 A New Pixel Detector for the CMS Experiment Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP) CMS Experiment: LHC – the Large Hadronmulti-purpose Collider experiment LHC Accelerator: Lake Geneva proton-proton and lead-lead collisions LHCb Experiment: CP violation and B physics Jura CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km ALICE Experiment: ATLAS Experiment: heavy ion physics multi-purpose experiment 4 05/08/2012 A New Pixel Detector for the CMS Experiment Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP) LHC Luminosities LHC 2012: 8 TeV Luminosity ramped up in record time Already >1 fb–1 delivered Expected for full year: 15–20 fb–1 LHC 2010/2011: 7 TeV Record instantaneous lumi: 3.5×1033 cm–2 s–1 About 5 fb–1 (= 800,000 top pairs) per experiment Exceeding expectations 5 05/08/2012 A New Pixel Detector for the CMS Experiment Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP) LHC Physics 2010/11: Rediscovery of the SM Precision measurements of W and Z bosons, top quarks, boson pairs, etc.
    [Show full text]