Download PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF File Folia Morphol. Vol. 78, No. 1, pp. 71–78 DOI: 10.5603/FM.a2018.0052 O R I G I N A L A R T I C L E Copyright © 2019 Via Medica ISSN 0015–5659 journals.viamedica.pl Branching patterns of the foetal popliteal artery A. Rohan1, Z. Domagała1, S. Abu Faraj1, A. Karykowska1, J. Klekowski2, N. Pospiech2, S. Wozniak1, B. Gworys3 1Division of Anatomy, Wroclaw Medical University, Wroclaw, Poland 2Clinical and Dissecting Anatomy Students Scientific Club, Wroclaw Medical University, Wroclaw, Poland 3Division of Basic Sciences, Witelon State University of Applied Sciences, Legnica, Poland [Received: 14 February 2018; Accepted: 10 June 2018] Background: The objective of the study is to evaluate the popliteal artery topography and the origin variability of its branches in human foetuses at the gestational age of from 4 to 9 months. The basis for the analysis are direct observations of classic anatomic dissections of the popliteal fossa. Possible dimorphic and bilateral differen- ces, as well as the gestational age variability at the foetal period, were considered. A typology of popliteal artery branches will be made on the basis of the studies. Materials and methods: The research material of this study comprises 231 foetuses (including 116 males and 115 females). The foetuses were divided into five 28-day age classes. The vessels of the lower extremity were injected with LBSK 5545 latex through the femoral artery. The bilateral dissection of the po- pliteal artery along with its branches was performed. No visible malformations were found in the research material, and the foetuses came from spontaneous abortions and premature births. Results and Conclusions: Ten per cent of the cases featured the variations of popliteal artery terminal branches. Three most commonly seen variations are the trifurcation, anterior tibial-peroneal trunk, and high terminal division of the po- pliteal artery. The most common course of the superior muscular branches is that there are two large branches which are distributed from the popliteal artery at the height of the knee joint cavity and they do not distribute cutaneous branches. Sural branches are also present as two large vessels without cutaneous branches. The genicular anastomosis branches that run on their own are a typical topographic system of these branches. (Folia Morphol 2019; 78, 1: 71–78) Key words: popliteal artery branches, popliteal artery topography, human foetuses INTRODUCTION minal angioplasty (PTA) or embolectomy. It is signif- Knowledge of the development at embryonic icant for clinicians to distinguish between an artery and foetal periods that determine the anatomical blockage or artery injury and the occurrence of artery variability of the cardiovascular system is of extreme variations, which is a result of being aware of possible significance to anatomists, surgeons and radiologists variations of the artery. Lack of such knowledge leads [3, 7, 25]. The variability of the course and the occur- to the development of complications during vascular rence of popliteal artery variations may have clinical surgeries [14]. implications for vascular transplants, indications for The objective of the study is to evaluate the pop- direct surgical intervention, percutaneous translu- liteal artery topography and the origin variability of Address for correspondence: Dr. Z. Domagala, Division of Anatomy Department of Morphology and Human Embryology, Wroclaw Medical University, ul. T. Chalubinskiego 6a, 50–368 Wrocław, Poland, e-mail: [email protected] 71 Folia Morphol., 2019, Vol. 78, No. 1 its branches in human foetuses at the gestational age Table 1. Sample sizes in successive gestational age classes of from 4 to 9 months. The basis for the analysis are Male Gestational age [month] Female direct observations of classic anatomic dissections of 20 4 22 the popliteal fossa. Possible dimorphic and bilateral 21 5 23 differences, as well as the gestational age variability 22 6 23 at the foetal period, were considered. A typology of 22 7 19 popliteal artery branches will be made on the basis 20 8 19 of the studies. 11 9 9 MATERIALS AND METHODS 116 Σ 115 The research material of this study comprises 231 foetuses (including 116 males and 115 females) at the gestational age from 84 to 224 days, stored in forma- Based on the analytics platform Statistica 10, the lin solution. The material comes from the collection evaluation of bilateral differences was made by means of the Department and Division of Normal Anatomy of the Wilcoxon signed-rank test. The significance of Wroclaw Medical University. Study has the Local evaluation of dimorphic and gestational age differ- Bioethics Commission acceptance. The foetuses were ences was made using the Kruskal-Wallis test. divided into five 28-day age classes. The vessels of the lower extremity were injected with LBSK 5545 latex RESULTS through the femoral artery. The bilateral dissection of It was found that the beginning of the popliteal the popliteal artery along with its branches was per- artery is determined by the adductor hiatus in all 462 formed. No visible malformations were found in the cases. It is a transition from the femoral artery to the research material, and the foetuses came from spon- popliteal artery. It was found that the diameter of the taneous abortions and premature births. The list of hiatus varied. However, regardless of the width of the the gestational age of the foetuses is shown in Table 1. adductor hiatus a typical course of the artery in the The gestation age of the foetuses was evaluated popliteal fossa is as follows: it is slightly covered by the on the basis of the last menstruation of the mother terminal insertion of the semimembranosus muscle in and verified by means of the method suggested by the proximal part of the popliteal fossa. The artery runs Gworys [8] where 4 of 16 characteristics were rele- between both heads of the gastrocnemius muscle, vant to determine age — body weight and length, and, on the sagittal side, under the plantaris muscle. circumference of head and chest. The artery runs along the popliteal surface of the femur, For the evaluation of popliteal artery topography then along the posterior wall of the articular capsule varieties and popliteal artery branches, both Adachi [2] of the knee joint, and along the oblique popliteal lig- and Lippert and Pabst [16] typologies were consid- ament in the further part of the popliteal fossa. Along ered, including the Kim et al. modification [14]. Both with the artery, the popliteal vein runs through the Adachi [2] and Lippert and Pabst [16], as well as other adductor hiatus. The vein lies more superficially than authors dealing with the anatomy of the popliteal the artery, and it covers the artery incompletely. The artery, placed their emphasis on the last portion of covering degree varies individually. Both vessels are the popliteal artery, that is on the observation of the covered by the same vascular sheath. From the sheath, variability of its terminal division. We could not find the tibial nerve runs superficially, which moves along the detailed description of the artery course in the the entire length of the popliteal fossa from the medial available source literature. The analysis of the collected side of the sheath to the lateral side. In the distal angle dissectional material (462 lower extremities) allowed us of the popliteal fossa, the popliteal artery is divided to evaluate the origin level and symmetry of the artery into the anterior and posterior tibial arteries. branches. It enabled us to determine the artery course An unusual course of the popliteal artery at the in relation to the knee joint, walls of the popliteal fossa, foetal state was found in 30 extremities altogether, popliteal fascia and in relation to other components of including 18 males and 12 females. We distinguished the neurovascular bundle. The variability of the popliteal two types of the artery course: type I — the typical artery terminal division was also analysed. course, i.e. the artery is covered by a homonymous 72 A. Rohan et al., Branching patterns of the foetal popliteal artery Table 2. Typology of the popliteal artery course at the foetal period Male Gestation Female Right side type Left side type age Right side type Left side type I II I II [month] I II I II 20 0 20 0 4 21 1 22 0 19 2 20 1 5 22 1 22 1 20 2 19 3 6 23 0 21 2 21 1 20 2 7 17 2 18 1 17 3 18 2 8 17 2 18 1 11 0 9 2 9 8 1 9 0 108 8 106 10 Σ 108 7 110 5 Table 3. Typology of the superior muscular branches in the foetuses Male Gestation Female Right side type Left side type age Right side type Left side type I II III I II III [month] I II III I II III 8 8 4 9 8 3 4 10 9 3 11 11 2 10 8 3 8 9 4 5 10 11 2 11 9 3 8 9 5 9 10 3 6 8 12 3 9 12 2 6 11 5 7 11 4 7 6 9 4 5 10 4 6 10 4 5 13 2 8 5 9 5 5 10 4 2 6 3 2 5 4 9 2 5 2 1 5 3 40 52 24 40 56 20 Σ 41 55 19 42 57 18 vein, and lies slightly medially from it; type II — the of superior muscular branches in the foetuses were artery lies laterally from the popliteal vein. Within distinguished: type I — no superior muscular branch- those two types there was found 10 cases (6 male, es, type II — which features two branches, and type 4 female) where the artery was covered by the medial III — with three branches.
Recommended publications
  • The Patellar Arterial Supply Via the Infrapatellar Fat Pad (Of Hoffa): a Combined Anatomical and Angiographical Analysis
    Hindawi Publishing Corporation Anatomy Research International Volume 2012, Article ID 713838, 10 pages doi:10.1155/2012/713838 Research Article The Patellar Arterial Supply via the Infrapatellar Fat Pad (of Hoffa): A Combined Anatomical and Angiographical Analysis Gregor Nemschak and Michael L. Pretterklieber Center of Anatomy and Cell Biology, Department of Applied Anatomy, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna, Austria Correspondence should be addressed to Michael L. Pretterklieber, [email protected] Received 3 February 2012; Accepted 21 March 2012 Academic Editor: Konstantinos Natsis Copyright © 2012 G. Nemschak and M. L. Pretterklieber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Even though the vascular supply of the human patella has been object of numerous studies until now, none of them has described in detail the rich arterial supply provided via the infrapatellar fat pad (of Hoffa). Therefore, we aimed to complete the knowledge about this interesting and clinically relevant topic. Five human patellae taken from voluntary body donators were studied at the Department of Applied Anatomy of the Medical University of Vienna. One was dissected under the operation microscope, a second was made translucent by Sihlers-solution, and three underwent angiography using a 3D X-ray unit. The results revealed that the patella to a considerable amount is supplied by arteries coursing through the surrounding parts of the infrapatellar fat pad. The latter were found to branch off from the medial and lateral superior and inferior genicular arteries.
    [Show full text]
  • Anatomy of the Arteries of the Human Body," P
    i's'S-si, fe+*>* /UCl***. U*A~* ANATOMY OP THE AKTERIES OF THE HUMAN BODY, Pejscripttue ant) jihxrgtcal, WITH THE DESCRIPTIVE ANATOMY OF THE HEART; By JOHN HATCH POWER, F.K.C.S.I., LATE PROFESSOR OF DESCRIPTIVE AND PRACTICAL ANATOMY IN THE ROYAL COLLEGE OF SURGEONS, IRELAND ; SURGEON TO THE CITY OF DUBLIN HOSPITAL, ETC. THIRD EDITION, By WILLIAM THOMSON, A.B., F.B.C.S., SURGEON TO THE RICHMOND SURGICAL HOSPITAL; MEMBER OF THE SURGICAL COURT OF EXAMINERS, ROYAL COLLEGE OF SDRGEONS, IRELAND; AND EXAMINER IN SURGERY, QUEEN'S UNIVERSITY, IRELAND, ETC. WITH ILLUSTRATIONS BY B. WILLS RICHARDSON, FELLOW AND SENIOR EXAMINER IN THE ROYAL COLLEGE OF SURGEONS; SURGEON TO THE ADELAIDE HOSPITAL, DUBLIN, ETC. DUBLIN : FANNIN AND CO., GEAFTON STEEET, BOOKSELLERS TO THE ROYAL COLLEGE OF SURGEONS. LONDON : LONGMANS AND CO. : SIMPKIN AND CO. MDCCCLXXXI. ?/?£ SKILL AND COMPANY, EDINBURGH, GOVERNMENT BOOK AND LAW PRINTERS FOR SCOTLAND. ; EDITOR'S PREFACE. The third edition of this book is issued under my supervision at the request of the publishers. Alterations have been made in the arrangement of the text, which has also been corrected in various places, in accordance with the views of the most modern authorities, both English and German. Borne portions have been omitted as being better suited to the pages of a physio- logical work. The notes of cases in the surgical part have been curtailed but the rarest have been allowed to remain in their collected form for facility of reference. It was my intention to give a full record of the ligature of arteries in Ireland during the last twenty years ; and in order to obtain particulars, a circular was sent to every hospital surgeon in this country.
    [Show full text]
  • Sural Artery Bypass in Buerger's Disease
    Ann Vasc Dis Vol.5, No.2; 2012; pp 199–203 ©2012 Annals of Vascular Diseases doi: 10.3400/avd.cr.11.00090 Case Report Sural Artery Bypass in Buerger’s Disease: Report of a Case Harunobu Matsumoto, MD,1 Eisuke Yamamoto, MD,1 Chiaki Kamiya, MD,1 Emi Miura, MD,1 Tadashi Kitaoka, MD,1 Jun Suzuki, MD, PhD,1 Kota Yamamoto, MD, PhD,1 Juno Deguchi, MD, PhD,1 Morihiro Higashi, MD, PhD,2 Jun-ichi Tamaru, MD, PhD,2 and Osamu Sato, MD, PhD1 A 72 year-old man was admitted to the hospital to receive treatment for resting pain and an ulcer, which had developed on an amputation stump, 4 months after he had undergone a thrombectomy, below-the-knee popliteal-dorsal pedis artery bypass of his left leg, and digital amputation of his 2nd toe. Angiography demonstrated diffuse arterial and bypass occlusion in his left leg that did not include a sural artery, which was the main collateral. Therefore, the patient underwent reversed saphenous vein bypass from the common femoral artery to the medial sural artery. His leg pain disappeared, and the ulcer healed promptly. Keywords: sural artery bypass, perigenicular artery bypass, collateral artery bypass INTRODUCTION CASE REPORT evascularization is the primary option in the manage- A 72 year-old man, who had smoked for fifty years, Rment of critical limb ischemia. Previous studies have was diagnosed with diabetes mellitus. He had suffered described bypass to the perigeniculate collateral arteries the thrombophlebitis of his left leg one year earlier and as an option for limb salvage in selected patients, such was admitted to the hospital to receive treatment for as in cases of extensive disease, previous failed endo- or coldness, cyanosis and severe rest pain in his leg and a open vascular attempts, lack of the usual crural arterial painful ulcer, measuring approximately 8 mm in diam- runoffs or autogenous substitutes being common scenar- eter, which had developed on the amputation stump of ios.1–7) However, the use of this bypass has been restricted the left 2nd toe.
    [Show full text]
  • The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
    THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work.
    [Show full text]
  • A Study of Popliteal Artery and Its Variations with Clinical Applications
    Dissertation on A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS. Submitted in partial fulfillment for M.D. DEGREE EXAMINATION BRANCH- XXIII, ANATOMY Upgraded Institute of Anatomy Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai - 600 003 THE TAMILNADU Dr.M.G.R. MEDICAL UNIVERSITY CHENNAI – 600 032 TAMILNADU MAY-2018 CERTIFICATE This is to certify that this dissertation entitled “A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS” is a bonafide record of the research work done by Dr.N.BAMA, Post graduate student in the Institute of Anatomy, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai- 03, in partial fulfillment of the regulations laid down by The Tamil Nadu Dr.M.G.R. Medical University for the award of M.D. Degree Branch XXIII- Anatomy, under my guidance and supervision during the academic year from 2015-2018. Dr. Sudha Seshayyan,M.B.B.S., M.S., Dr. B. Chezhian, M.B.B.S., M.S., Director & Professor, Associate Professor, Institute of Anatomy, Institute of Anatomy, Madras Medical College, Madras Medical College, Chennai– 600 003. Chennai– 600 003. The Dean, Madras Medical College & Rajiv Gandhi Govt. General Hospital, Chennai Chennai – 600003. ACKNOWLEDGEMENT I wish to express exquisite thankfulness and gratitude to my most respected teachers, guides Dr. B. Chezhian, Associate Professor Dr.Sudha Seshayyan, Director and Professor, Institute ofAnatomy, Madras Medical College, Chennai – 3, for their invaluable guidance, persistent support and quest for perfection which has made this dissertation take its present shape. I am thankful to Dr. R. Narayana Babu, M.D., DCH, Dean, Madras Medical College, Chennai – 3 for permitting me to avail the facilities in this college for performing this study.
    [Show full text]
  • Cadaveric Atlas for Orthoplastic Lower Limb and Foot Reconstruction of Soft Tissue Defects
    Review Article Clinics in Surgery Published: 28 Jun, 2018 Cadaveric Atlas for Orthoplastic Lower Limb and Foot Reconstruction of Soft Tissue Defects Kaitlyn L Ward1, Anthony Romano1 and Edgardo R Rodriguez-Collazo2* 1Franciscan Foot & Ankle Institute, Federal Way, WA, USA 2Presence Saint Joseph Hospital, Chicago, IL, USA Abstract Soft tissue deficits or non-healing wounds are a common and challenging problem faced by the lower extremity reconstructive surgeon. These cases often end in proximal amputation, especially in those with co-morbidities, compromised angiosomes, or following significant trauma. This atlas provides a guide for surgeons to understand and treat soft tissue lower extremity defects and complications. We discuss basic orthoplastic reconstructive principles and patient work-up; thus, alleviating the need to refer to a plastic or microsurgical specialist. Additionally, incision placement, anatomy of perforators, axial flow and arc of rotation for flaps are shown for medial, lateral and anterior compartments of the lower leg as well as the foot. The muscular and fascio cutaneous flaps in this atlas can be used to cover almost all areas of the lower extremity from the knee distally to the digits. The purpose of this atlas is to serve as a guide for surgeons to more effectively treat these soft tissue defects without the need for amputation. Keywords: Orthoplastic; Reconstruction; Soft tissue defects; Flaps; Lower extremity Introduction and Preoperative Planning The first step in preparation for performing any flap is precise preoperative planning. Anatomic landmarks should be utilized to map out major neurovascular structures and perforating vessels. OPEN ACCESS Locations and patency of said vessels can be further confirmed with the use of Doppler ultrasound *Correspondence: and/or angiography if necessary.
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • Product Information
    G30 Latin VASA CAPITIS et CERVICIS ORGANA INTERNA 1 V. frontalis 49 Pulmo sinister 2 V. temporalis superficialis 50 Atrium dextrum 3 A. temporalis superficialis 51 Atrium sinistrum 3 a A. maxillaris 52 Ventriculus dexter 4 A. occipitalis 53 Ventriculus sinister 5 A. supratrochlearis 54 Valva aortae 6 A. et V. angularis 55 Valva trunci pulmonalis 7 A. et V. facialis 56 Septum interventriculare 7 a A. lingualis 57 Diaphragma 9 V. retromandibularis 58 Hepar 10 V. jugularis interna 11 A. thyroidea superior VASA ORGANORUM INTERNORUM 12 A. vertebralis 59 Vv. hepaticae 13 Truncus thyrocervicalis 60 V. gastrica dextra et sinistra 14 Truncus costocervicalis 61 A. hepatica communis 15 A. suprascapularis 61 a Truncus coeliacus 16 A. et V. subclavia dextra 62 V. mesenterica superior 17 V. cava superior 63 V. cava inferior 18 A. carotis communis 64 A. et V. renalis 18 a A. carotis externa 65 A. mesenterica superior 19 Arcus aortae 66 A. et V. lienalis 20 Pars descendens aortae 67 A. gastrica sinistra 68 Pars abdominalis® aortae VASA MEMBRII SUPERIORIS 69 A. mesenterica inferior 21 A. et V. axillaris 22 V. cephalica VASA REGIONIS PELVINAE 22 a A. circumflexa humeri anterior 72 A. et V. iliaca communis 22 b A. circumflexa humeri posterior 73 A. et V. iliaca externa 23 A. thoracodorsalis 74 A. sacralis mediana 24 A. et V. brachialis 75 A. et V. iliaca interna 25 A. thoracoacromialis 26 A. subclavia sinistra VASA MEMBRI INFERIORIS 27 V. basilica 76 Ramus ascendens a. circumflexae femoris 28 A. collateralis ulnaris superior lateralis 29 A. ulnaris 77 Ramus descendens a.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • A Three-Dimensional Anatomy of the Posterolateral Compartment of the Knee: the Use of a New Technology in the Study of Musculoskeletal Anatomy
    Open Access Journal of Sports Medicine Dovepress open access to scientific and medical research Open Access Full Text Article Original RESEARCH A three-dimensional anatomy of the posterolateral compartment of the knee: the use of a new technology in the study of musculoskeletal anatomy Diego Costa Astur1 Background: Recently, an interest has developed in understanding the anatomy of the posterior Gustavo Gonçalves Arliani1 and posterolateral knee. The posterolateral compartment of the knee corresponds to a complex Camila Cohen Kaleka2 arrangement of ligaments and myotendinous structures. Undiagnosed lesions in this compartment Wahy Jalikjian3 are the main reason for failure of the anterior and posterior cruciate ligament reconstructions. Pau Golano4,5 Understanding the anatomy of these structures is essential to assist in the diagnosis and treat- Moises Cohen1 ment of these lesions. The aim of this study was to better understand the relationship between these structures of the knee using three-dimensional technology. For personal use only. 1Department of Orthopedics and Methods: Ten knees were included from cadaver lower limbs of adult patients. The skin and Traumatology, Universidade Federal de São Paulo (UNIFESP), São Paulo, subcutaneous tissue were removed leaving only the muscle groups and ligaments. The neurovas- 2Department of Orthopedics and cular bundles and their ramifications were preserved. Images were acquired from the dissections Traumatology, Faculdade de Medicina using a Nikon D40 camera with AF-S Nikkor 18–55 mm (1:3.5 5.6 GII ED) and Micro Nikkor da Santa Casa de Misericórdia de São Paulo, São Paulo, 3Department 105 mm (1:2.8) lenses. The pair of images were processed using Callipyan 3D and AnaBuilder of Orthopedics and Traumatology, software, which transforms the two images into one anaglyphic image.
    [Show full text]
  • Thieme: an Illustrated Handbook of Flap-Raising Techniques
    Index 109 Index A Allen test F radial forearm flap 11, 14 fasciocutaneous flap based on posterior interosseous ulnar artery free flap 15 artery 18–20 anastomoses see sutures and anastomoses femoral artery/vessels antibiotics (perioperative), greater omentum flap 91 gracilis flap 25 arcuateline(lineaarcuata) 57,58,59 groin flap 61, 63 arm flaps 3, 3–10 iliac crest flap 65 axial pattern skin flaps 96–97 femoral cutaneous nerve, lateral see cutaneous nerve axillary artery 69, 70, 74, 80 femoral nerve, lateral circumflex 28, 29 axillary fold, posterior 75 fibula flap, vascularized 36–40 axillary nerve, cutaneous branch 4–5 finger pulp reconstruction 49 axillary vein, latissimus dorsi flap 75 flexor digitorum superficialis flap 3 fluorescein dye, gracilis flap 27 B foot flaps blood vessels see vasculature dorsal 44–48 brachial cutaneous nerve, lateral 4–5 medial plantar 49–51 forearm flaps 3, 11–20 C free skin flaps (in general) 97 chicken wing, training on 108 confluence anastomoses 106, 107 G cranial (skull) base reconstruction 74 gastrocnemius muscle 98 cutaneous branches flap 32–35, 98 of circumflex scapular artery 80 in sural flap dissection 42 of T12 segment see T12 segment gastroepiploic arteries/vessels 90 of ulnar artery 16 gluteal nerve, superior, descending branch 28, 29 cutaneous grafts and flaps see skin; skin grafts gluteus maximus 98 cutaneous nerve gracilis flap 23, 24–27, 31 of arm, lower lateral 8 groin flap 61–64 of forearm lateral 11 H medial 11 hand flaps 3 posterior 8, 18, 20 handling instruments 105–107 lateral brachial
    [Show full text]
  • Higher Division of Popliteal Artery: a Case Report
    International Journal of Research in Medical Sciences Billakanti PB. Int J Res Med Sci. 2014 Nov;2(4):1723-1725 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: 10.5455/2320-6012.ijrms20141193 Case Report Higher division of popliteal artery: a case report Prakash Babu Billakanti* Department of Anatomy, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India Received: 6 August 2014 Accepted: 5 September 2014 *Correspondence: Dr. Prakash Babu Billakanti, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT During the routine dissection of anatomy in an adult male cadaver at the department of anatomy, Manipal University, Manipal, higher division of popliteal artery was observed on the right side. This artery divided proximal to upper border of popliteus muscle into anterior and posterior tibial arteries. Inferomedial genicular artery which is usually a branch of popliteal artery was found to be arising from anterior tibial artery. However arterial branching pattern and point of bifurcation of popliteal artery on the left side were usual. The knowledge of these variations will be useful for angiography or various surgical approaches during knee joint surgery. Keywords: Popliteal artery, Higher division, Anterior and Posterior tibial arteries INTRODUCTION limb arteries are important for the success of the arthroscopic surgeries5 The Popliteal Artery (PA) is a common site for bypass grafts above or below knee.
    [Show full text]